Skip to main content
Log in

Jacobi elliptic function expansion method for the improved modified kortwedge-de vries equation

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

In this paper, the Jacobi elliptic function expansion technique is put forward for the first time to build the exact solution of the improved modified Kortwedge-de varies (mKdV) equation. The goal of this work is to explore more new exact solutions to the improved mKdV equation by using a finite series of degree \(n\) in terms of Jacobi elliptic functions. More Jacobi elliptic function solutions are obtained including the single function solutions and the combined function solutions. Jacobi elliptic function expansion (JEFE) method is an effective method, and it is extensively used for the exact analytical solution of nonlinear partial differential equations (NPDEs). Moreover, this technique has multiple versions depending on its intrinsic and essential qualities, therefore, they provided exact solutions to such types of nonlinear problems. This method is based on the Jacobi elliptic functions. We use the traveling wave variable to transform the NPDEs into nonlinear ordinary differential equations (ODEs) with integer order. After adopting, the most general and explicit form of the JEFE method is suggested to produce the exact and more accurate solution to the improved mKdV equation. It is also confirmed that the solutions of periodic nature obtained by the JEFE method comprise certain solitary and shock wave solutions. Additionally, direct-viewing analysis is explicated by showing some figures of partial solutions. It is concluded from the results that the suggested technique is quite a helpful technique for solving a large variety of NPDEs analytically. In mathematical physics, many other kinds of nonlinear evaluation equations can be solved by this method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this article.

References

  • Ahmad, I., Ahmad, H., Ink, M., Rezazadeh, H., Akbar, M.A., Khater, M.M.A., Akinyemi, L., Jhangeer, A.: Solution of fractional-order Korteweg-de Vries and Burgers’ equations utilizing local meshless method. J. Ocean Eng. Sci. (2021). https://doi.org/10.1016/j.joes.2021.08.014

    Article  Google Scholar 

  • Akinyemi, L., Akpan, U., Veeresha, P., Rezazadeh, H., Ink, M.: Computational techniques to study the dynamics of generalized unstable nonlinear Schrödinger equation. J. Ocean Eng. Sci. (2022a). https://doi.org/10.1016/j.joes.2022.02.011

    Article  Google Scholar 

  • Akinyemi, L., Inc, M., Khater, M., Rezazadeh, H.: Dynamical behaviour of Chiral nonlinear Schrödinger equation. Opt. Quantum Electron 54, 1–15 (2022b)

    Article  Google Scholar 

  • Ali, K.K., Zabihi, A., Rezazadeh, H., Ansari, R., Inc, M.: Optical soliton with Kudryashov’s equation via sine-Gordon expansion and Kudryashov methods. Opt. Quantum Electron 53, 1–15 (2021)

    Article  Google Scholar 

  • Alquran, M.: Solitons and periodic solutions to nonlinear partial differential equations by the Sine-Cosine method. Appl. Math. Inf. Sci. 6, 85–88 (2012)

    MathSciNet  MATH  Google Scholar 

  • Alquran, M., Al-Khaled, K.: The tanh and sine-cosine methods for higher order equations of Korteweg-de Vries type. Phys. Scr. 84, 025010 (2011)

    Article  ADS  MATH  Google Scholar 

  • Alquran, M., Qawasmeh, A.: Classifications of solutions to some generalized nonlinear evolution equations and systems by the sine-cosine method. Nonlinear Stud. 20, 263–272 (2013)

    MathSciNet  MATH  Google Scholar 

  • Alquran, M., Qawasmeh, A.: Soliton solutions of shallow water wave equations by means of (G′/G)-expansion method. J. Appl. Anal. Comput. 4, 221–222 (2014)

    MathSciNet  MATH  Google Scholar 

  • Alquran, M., Ali, M., Al-Khaled, K.: Solitary wave solutions to shallow water waves arising in fluid dynamics. Nonlinear Stud. 19, 555–562 (2012)

    MathSciNet  MATH  Google Scholar 

  • Belic, M., Petrovic, N., Zhong, W., Xie, R., Chen, G.: Analytical light bullet solutions to the generalized (3+1)-dimensional nonlinear Schro¨dinger equation. Phys. Rev. Lett. 101, 123904 (2008)

    Article  ADS  Google Scholar 

  • Bulut, H., Sulaiman, T.A., Baskonus, H.M., Sandulyak, A.A.: New solitary and optical wave structures to the (1+ 1)-dimensional combined KdV–mKdV equation. Optik 135, 327–336 (2017). https://doi.org/10.1016/j.joes.2021.08.014

    Article  ADS  Google Scholar 

  • Inan, I.E., Inc, M., Rezazadeh, H., Akinyemi, L.: Optical solitons of (3+ 1) dimensional and coupled nonlinear Schrodinger equations. Opt. Quantum Electron 54, 1–15 (2022)

    Google Scholar 

  • Jhangeer, A., Faridi, W.A., Asjad, M.I., Ink, M.: A comparative study about the propagation of water waves with fractional operators. J. Ocean Eng. Sci. (2022). https://doi.org/10.1016/j.joes.2022.02.010

    Article  Google Scholar 

  • Khater, M., Jhangeer, A., Rezazadeh, H., Akinyemi, L., Akbar, M.A., Inc, M., Ahmad, H.: New kinds of analytical solitary wave solutions for ionic currents on microtubules equation via two different techniques. Opt. Quantum Electron 53, 1–27 (2021)

    Article  Google Scholar 

  • Khodadad, F.S., Mirhosseini-Alizamini, S.M., Günay, B., Akinyemi, L., Rezazadeh, H., Inc, M.: Abundant optical solitons to the Sasa-Satsuma higher-order nonlinear Schrödinger equation. Opt. Quantum Electron 53, 1–17 (2021)

    Article  Google Scholar 

  • Liu, S.K., Fu, Z.T., Liu, S.D., Zhao, Q.: Jacobi elliptic function expansion method and periodic wave solutions of nonlinear wave equations. Phys. Lett. A 289, 69–74 (2001)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Qawasmeh, A., Alquran, M.: Reliable study of some new fifth-order nonlinear equations by means of (G′/G)-expansion method and rational sine-cosine method. Appl. Math. Sci. 8, 5985–5994 (2014)

    Google Scholar 

  • Raslan, K.R.: The application of Hes Exp-function method for MKdV and Burgers equations with variable coefficients. Int. J. Nonlinear Sci. 7, 174–181 (2009)

    MathSciNet  MATH  Google Scholar 

  • Raza, N., Batool, A., Inc, M.: New hyperbolic and rational form solutions of (2+ 1)-dimensional generalized Korteweg-de Vries model. J. Ocean Eng. Sci. (2022). https://doi.org/10.1016/j.joes.2022.04.021

    Article  Google Scholar 

  • Sabiu, J., Jibril, A.: Gadu AM new exact solution for the (3 + 1) conformable space-time fractional modified Korteweg-de-vries equations via sine-cosine method. J. Taibah Univ. Sci. 13, 91–95 (2019)

    Article  Google Scholar 

  • Sain, S., Ghose-Choudhury, A., Garai, S.: Solitary wave solutions for the KdV-type equations in plasma: a new approach with the Kudryashov function. Eur. Phys. J. plus 136, 1–13 (2021)

    Article  Google Scholar 

  • Samsami Khodadad, F., Mirhosseini-Alizamin, S.M., Günay, B., Akinyemi, L., Rezazadeh, H., Inc, M.: Abundant optical solitons to the Sasa-Satsuma higher-order nonlinear Schrödinger equation. Opt. Quantum Electron 53, 1–17 (2021)

    Google Scholar 

  • Shukri, S., Al-Khaled, K.: The extended tanh method for solving systems of nonlinear wave equations. Appl. Math. Comput. 217, 1997–2006 (2010)

    MathSciNet  MATH  Google Scholar 

  • Wang, H., Xiang, C.: Jacobi elliptic function solution for the modified Korteweg-de Vries equation. J. King Saud Univ. Sci. 25, 271–274 (2013)

    Article  Google Scholar 

  • Wazwaz, A.M.: A sine-cosine method for handling nonlinear wave equations. Math. Comput. Modell. 40, 499–508 (2004)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jamilu Sabi’u.

Ethics declarations

Conflict of interest

All authors declared that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Photonics: Current Challenges and Emerging Applications, Guest edited by Jelena Radovanovic, Dragan Indjin, Maja Nesic, Nikola Vukovic and Milena Milosevic.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khan, M.I., Asghar, S. & Sabi’u, J. Jacobi elliptic function expansion method for the improved modified kortwedge-de vries equation. Opt Quant Electron 54, 734 (2022). https://doi.org/10.1007/s11082-022-04109-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-022-04109-5

Keywords

Navigation