Skip to main content
Log in

Trace gases analysis in pulsed photoacoustics based on swarm intelligence optimization

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

Application of pulsed photoacoustic spectroscopy for in-situ measurements of trace gases with changeable spatial and temporal distribution requires high sensitivity, selectivity, and easy handling devices. In order to improve PAS characteristics in trace gases measurements, we have applied computational intelligence. Computational intelligence as a combination of learning, adaptation, and evolution may increase efficiency and precision of measurements and provides possibility of system–environment interactions. Two metaheuristic techniques are applied to improve accuracy in simultaneous determination of photoacoustic signal parameters: particle swarm optimization and artificial bee colony optimization. Swarm intelligences are applied to simultaneously determination of unknown parameters of photoacoustic signal: radius of the laser beam spatial profile \({r}_{L}\) and vibrational-to-translational relaxation time \({\tau }_{V-T}\). Experimental PA signals are generated in the SF6 + Ar mixture in multiphoton regime. Results produced by particle swarm optimization and artificial bee colony are discussed. Values of common parameters: population size and number of iterations in both algorithms are chosen to be the same. Advantages, such as easy implementation, high precision, and the possibility of finding solutions in a wide range of parameters make swarm intelligence algorithms efficient and perspective tool for in-situ measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Beck, K.M., Gordon, R.J.: Theory and application of time-resolved optoacoustics in gases. J. Chem. Phys. 89, 5560–5567 (1988)

    Article  ADS  Google Scholar 

  • Beck, K.M., Ringwelski, A., Gordon, R.J.: Time-resolved optoacoustic measurements of vibrational relaxation rates. Chem. Phys. Lett. 121, 529–534 (1985)

    Article  ADS  Google Scholar 

  • Djordjevic, КL., Galovic, S.P., Jordovic-Pavlovic, M.I., Nesic, M.V., Popovic, M.N., Cojbasic, Z.M., Markushev, D.D.: Photoacoustic optical semiconductor characterization based on machine learning and reverse-back procedure. Opt. Quantum Electron. 52(5), 1–9 (2020)

    Article  Google Scholar 

  • Engelbrecht, A.P.: Computational Intelligence, 2nd edn. Wiley, Hoboken (2007)

    Book  Google Scholar 

  • Hodgkinson, J., Tatam, R.P.: Optical gas sensing: a review. Meas. Sci. Technol. 24, 012004 (2013)

    Article  ADS  Google Scholar 

  • Karaboga, D., Basturk, B.: A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm. J. Glob. Optim. 39, 459–471 (2007)

    Article  MathSciNet  Google Scholar 

  • Karaboga, D., Basturk, B.: On the performance of artificial bee colony (ABC) algorithm. Appl. Soft Comput. 8(1), 687–697 (2008)

    Article  Google Scholar 

  • Karaboga, D., Gorkemli, B., Ozturk, C., Karaboga, N.: A comprehensive survey: artificial bee colony (ABC) algorithm and applications. Artif. Intell. Rev. 42(1), 21–57 (2014)

    Article  Google Scholar 

  • Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proceedings of ICNN'95—International Conference on Neural Networks Year: 1995 Volume: 4 Conference Paper Publisher. IEEE (1995)

  • Lazarević, A., Ćojbašić, Ž, Lazarević, D.: Computationally intelligent modelling of the plasma cutting process. Int. J. Comput. Integr. Manuf. 33(3), 252–264 (2020). https://doi.org/10.1080/0951192X.2020.1736635

    Article  Google Scholar 

  • Li, J., Chen, W., Yu, B.: Recent progress on infrared photoacoustic spectroscopy techniques. Appl. Spectrosc. Rev. 46, 440–471 (2011)

    Article  ADS  Google Scholar 

  • Lukić, M., Ćojbasić, Ž, Rabasović, M., Markushev, D., Todorović, D.: Neural networks-based real-time determination of the laser beam spatial profile and vibrational-to-translational relaxation time within pulsed photoacoustics. Int. J. Thermophys. 34(8–9), 1795–1802 (2013a)

    Article  ADS  Google Scholar 

  • Lukić, M., Ćojbasić, Ž, Rabasović, M., Markushev, D., Todorović, D.: Genetic algorithms application for the photoacoustic signal temporal shape analysis and energy density spatial distribution calculation. Int. J. Thermophys. 34(8–9), 1466–1472 (2013b)

    Article  ADS  Google Scholar 

  • Lukić, M., Ćojbašić, Ž, Rabasović, M.D., Markushev, D.D.: Computationally intelligent pulsed photoacoustics. Meas. Sci. Technol. 25(12), 125203 (2014)

    Article  ADS  Google Scholar 

  • Malan, K., Engelbrecht, A.: Algorithm comparisons and the significance of population size. In: Proceedings of the IEEE Congress on Evolutionary Computation (2008)

  • Markushev, D.D., Jovanović-Kurepa, J., Terzić, M.: Excitation dynamics during the multiphoton absorption in SF6+buffer-gas mixtures. J. Quantum Spectrosc. Radiat. Transf. 76, 85–99 (2003)

    Article  ADS  Google Scholar 

  • Meyer, P.L., Sigrist, M.W.: Atmospheric pollution monitoring using CO2-laser photoacoustic spectroscopy and other techniques. Rev. Sci. Instrum. 61(7), 1779–1807 (1990)

    Article  ADS  Google Scholar 

  • Parsopoulos, К., Vrahatis, M.: Particle swarm optimization and intelligence: advances and applications. IGI Global, Joanina, Greece (2010)

  • Rabasović, M.D., Nikolić, J.D., Markushev, D.D.: Pulsed photoacoustic system calibration for highly excited molecules: II. Influence of the laser beam profile and the excitation energy decay. Meas. Sci. Technol. 17, 2938–2944 (2006a)

    Article  ADS  Google Scholar 

  • Rabasović, M.D., Markushev, D.D., Jovanović-Kurepa, J.: Pulsed photoacoustic system calibration for highly excited molecules. Meas. Sci. Technol. 17, 1826–1837 (2006b)

    Article  ADS  Google Scholar 

  • Rabasović, M.D., Nikolić, J.D., Markushev, D.D.: Simultaneous determination of the spatial profile of the laser beam and vibrational-to-translational relaxation time by pulsed photoacoustics. Appl. Phys. B 88, 309–315 (2007)

    Article  ADS  Google Scholar 

  • Repond, P., Sigrist, M.W.: Photoacoustic spectroscopy on trace gases with continuously tunable CO2 laser. Appl. Opt. 35(21), 4065–4085 (1996)

    Article  ADS  Google Scholar 

  • Russo, S.D., Sampaolo, A., Patimisco, P., Menduni, G., Giglio, M., Hoelzl, C., Passaro, V.M.N., Wu, H., Dong, L., Spagnolo, V.: Quartz-enhanced photoacoustic spectroscopy exploiting low-frequency tuning forks as a tool to measure the vibrational relaxation rate in gas species. Photoacoustics 21, 100227 (2021)

    Article  Google Scholar 

  • Sigrist, M.W.: Trace gas monitoring by laser-photoacoustic spectroscopy. Infrared Phys. Technol. 36(I), 415–425 (1995)

    Article  ADS  Google Scholar 

  • Sigrist, M.W.: Trace gas monitoring by laser photoacoustic spectroscopy and related techniques (plenary). Rev. Sci. Instrum. 74(1), 486–490 (2003)

    Article  ADS  Google Scholar 

  • Talbi, E.G.: Metaheuristics: from design to implementation. Wiley, New York (2009)

    Book  Google Scholar 

  • Tomberg, T., Vainio, M., Hieta, T., Halonen, L.: Sub-parts-per-trillion level sensitivity in trace gas detection by cantilever-enhanced photo-acoustic spectroscopy. Sci. Rep. 8, 1848 (2018)

    Article  ADS  Google Scholar 

  • Xiong, L., Bai, W., Chen, F., Zhao, X., Yu, F., Diebold, G.J.: Photoacoustic trace detection of gases at the parts-per-quadrillion level with a moving optical grating. Proc. Natl. Acad. Sci. USA 114(28), 7246–7249 (2017)

    Article  ADS  Google Scholar 

Download references

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design.

Corresponding author

Correspondence to M. Lukić.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Photonics: Current Challenges and Emerging Applications, Guest edited by Jelena Radovanovic, Dragan Indjin, Maja Nesic, Nikola Vukovic and Milena Milosevic.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lukić, M., Ćojbašić, Ž. & Markushev, D.D. Trace gases analysis in pulsed photoacoustics based on swarm intelligence optimization. Opt Quant Electron 54, 674 (2022). https://doi.org/10.1007/s11082-022-04059-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-022-04059-y

Keywords

Navigation