Skip to main content

Advertisement

Log in

Design and characterization of a photonic crystal fiber for improved THz wave propagation and analytes sensing

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

In this article, a hexagonal-shaped porous core and sectored-cladding structured photonic crystal fiber (PCF) is presented for efficient wave propagation in Terahertz (THz) domain. The full vector analysis based finite element method with Comsol software (v. 5.3a) is employed to design and optimize the PCF geometry and evaluate its optical properties. The PCF geometry demonstrates polarization maintaining attributes with a significant distinction between x and y polarization modes. The proposed PCF exhibits an ultra-low effective material loss of 0.013 cm−1 and 0.020 cm−1 in x and y polarization modes, respectively with a flattened dispersion of ± 0.020 ps/THz/cm and ± 0.065 ps/THz/cm in the respective modes at 1 THz. Additionally, the proposed PCF structure is investigated for sensing different liquid chemicals (cholesterol, methanol, ethanol, and benzene) and air pollutants (cyanide, dioxin, nitrogen oxide, and hydrogen sulfide). It is shown that the proposed PCF can outperform a number of recently reported designs in the literature. The fabrication potential of the PCF are also discussed in the context of present developments in manufacturing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

References

  • Ahmed, K., Morshed, M., Asaduzzaman, S., Arif, M.F.H.: Optimization and enhancement of liquid analyte sensing performance based on square-cored octagonal photonic crystal fiber. Opt. Int. J. Light Electron Opt. 131, 687–696 (2017)

    Article  Google Scholar 

  • Ahmed, K., Ahmed, F., Roy, S., Paul, B.K., Aktar, M.N., Vigneswaran, D., Islam, M.S.: Refractive index based blood components sensing in terahertz spectrum. IEEE Sens. J. 19(9), 3368–3375 (2019a)

    Article  ADS  Google Scholar 

  • Ahmed, S., Mou, J.R., Mollah, M.A., Debnath, N.: Hollow-core photonic crystal fiber sensor for refractive index sensing. In: 2019b IEEE International Conference on Telecommunications and Photonics (ICTP) (2019b)

  • Asaduzzaman, S., Ahmed, K.: Proposal of a gas sensor with high sensitivity, birefringence and nonlinearity for air pollution monitoring. Sens. Bio-Sens. Res. 10, 20–26 (2016)

    Article  Google Scholar 

  • Atakaramians, S., Afshar, S., Ebendorff-Heidepriem, H., Nagel, M., Fischer, B.M., Abbott, D., Monro, T.M.: THz porous fibers: design, fabrication and experimental characterization. Opt. Express 17(16), 14053–14062 (2009)

  • Bao, H., Nielsen, K., Rasmussen, H.K., Jepsen, P.U.: Fabrication and characterization of porous-corehoneycomb bandgap THz fibers. Opt. Express 20(28), 29507–29517 (2012)

    Article  ADS  Google Scholar 

  • Bise, R.T., Trevor, D.: Solgel-derived micro-structured fibers: Fabrication and characterization. In: Proceedings of the Optical Fiber Communication Conference, Anaheim, CA, USA, 6–11 (2005)

  • Buczynski, R.: Photonic crystal fibers. Acta Phys. Pol. A 106(2), 358–362 (2004)

    Article  Google Scholar 

  • Chumnankul, W.W., Png, G.M., Yin, X., Atakaramians, S., Jones, I., Lin, H., Ung, B.S.Y., Balakrishnan, J., Ng, B.W.H., Ferguson, B., Mickan, S.P., Fischer, B.M., Abbott, D.: T-ray sensing and imaging. Proc. IEEE 95(8), 1528–1558 (2007)

    Article  Google Scholar 

  • Cia, M.N., Melzer, J.E., Harrington, J.A., Mitrofanov, O.: Teflon tubes for wave guiding at 1–2 THz. J. Infrared Millim. Terahertz Waves 36(6), 542–555 (2015)

    Article  Google Scholar 

  • Cordeiro, C.M., Dos Santos, E.M., Cruz, C.B., de Matos, C.J., Ferreira, D.S.: Lateral access to the holes of photonic crystal fibers–selective filling and sensing applications. Opt. Express 14(18), 8403–8412 (2006)

    Article  ADS  Google Scholar 

  • Deibel, J.A., Berndsen, N., Mittleman, D.M.: Design of cylindrical-wire wave guides and other THz devices can be aided by finite element models that characterize propagation and interaction characteristics. In: Proceedings of the IEEE, vol. 95, no. 8 (2007)

  • Du, Y., Lu, Q., Wu, S.T.: Electrically tunable liquid-crystal photonic crystal fiber. Appl. Phys. Lett. 85(12), 2181–2183 (2004)

    Article  ADS  Google Scholar 

  • Ebendorff-Heidepriem, H., Schuppich, J., Dowler, A., Lima-Marques, L., Monro, T.M.: 3D-printed extrusion dies: a versatile approach to optical material processing. Opt. Mater. Exp. 4(8), 1494–1504 (2014)

    Article  ADS  Google Scholar 

  • Emiliyanov, G., Jensen, J.B., Bang, O., Hoiby, P.E., Pedersen, L.H., Kjr, E.M., Lindvold, L.: Localized biosensing with Topas microstructured polymer optical fiber. Opt. Lett. 32(5), 460–462 (2007)

    Article  ADS  Google Scholar 

  • Emiliyanov, G., Hiby, P.E., Pedersen, L.H., Bang, O.: Selective serial multi-antibody biosensing with TOPAS microstructured polymer optical fibers. Sensors 13(3), 3242–3251 (2013)

    Article  ADS  Google Scholar 

  • Ghazanfari, A., Li, W., Leu, M.C., Hilmas, G.E.: A novel freeform extrusion fabrication process for producing solid ceramic components with uniform layered radiation drying. Addit. Manuf. 15, 102–112 (2017)

    Google Scholar 

  • Hansen, T.P., Broeng, J., Libori, S.E., Knudsen, E., Bjarklev, A., Jensen, J.R.: Highly birefringent index-guiding photonic crystal fibers. IEEE Photon. Technol. Lett. 13(6), 588–590 (2001)

    Article  ADS  Google Scholar 

  • Hasanuzzaman, G.K.M., Habib, M.S., Razzak, S.M.A., Hossain, M.A., Namihira, Y.: Low loss single mode porous-core Kagome Photonic crystal fiber for THz wave guidance. J. Light-Wave Technol. 33(19), 4027–4031 (2015)

    Article  ADS  Google Scholar 

  • Ho, L., Pepper, M., Taday, P.: Terahertz spectroscopy: Signatures and fingerprints. Nat. Photon. 2(9), 541–543 (2008)

    Article  ADS  Google Scholar 

  • Huang, Y., Xu, Y., Yariv, A.: Fabrication of functional microstructured optical fibers through a selective-filling technique. Appl. Phys. Lett. 85(22), 5182–5184 (2004a)

    Article  ADS  Google Scholar 

  • Huang, Y., Xu, Y., Yariv, A.: Fabrication of functional microstructured optical fibers through a selective-filling technique. Appl. Phys. Lett. 85(22), 5182–5184 (2004b)

    Article  ADS  Google Scholar 

  • Islam, M.R., Mamadou, M.: Spider web ultrasensitive terahertz photonic crystal fiber for chemical sensing. Opt. Eng. 59(8), 1–13 (2020)

    Article  Google Scholar 

  • Islam, M.S., Rana, S., Islam, M.R., Faisal, M., Rahman, H., Sultana, J.: Porous core photonic crystal fiber for ultra-low material loss in THz regime. IET Commun. 10(16), 2179–2183 (2016a)

    Article  Google Scholar 

  • Islam, M.S., Islam, M.R., Faisal, M., Arefin, A.S.M.S., Rahman, H., Sultana, J., Rana, S.: Extremely low-loss, dispersion flattened porous-core photonic crystal fiber for terahertz regime. Opt. Eng. 55(7), 076117 (2016b)

    Article  ADS  Google Scholar 

  • Islam, M.S., Sultana, J., Rana, S., Islam, M.R., Faisal, M., Kaijage, S.F., Abbott, D.: Extremely low material loss and dispersion flattened TOPAS based circular porous fiber for long distance terahertz wave transmission. Optical Fiber Technol. 24, 6–11 (2016c)

    Google Scholar 

  • Islam, M.I., Ahmed, K., Asaduzzaman, S., Paul, B.K., Bhuiyan, T., Sen, S., Islam, M.S., Chowdhury, S.: Design of single mode spiral photonic crystal fiber for gas sensing applications. Sens. Bio-Sens. Res. 13, 55–62 (2017b)

    Article  Google Scholar 

  • Islam, M.S., Faisal, M., Razzak, S.M.A.: Extremely low loss porous-core photonic crystal fiber with ultra-flat dispersion in terahertz regime. J. Opt. Soc. Am. B 34(8), 1747–1754 (2017c)

    Article  ADS  Google Scholar 

  • Islam, M.S., Sultana, J., Rifat, A.A., Dinovitser, A., Ng, B.W.-H., Abbott, D.: Terahertz sensing in a hollow core photonic crystal fiber. IEEE. Sens. J. 18, 1558–1748 (2018a)

    Article  Google Scholar 

  • Islam, M.S., Sultana, J., Ahmed, K., Islam, M.R., Dinovitser, A., Wai-Him Ng, B., Abbott, D.: A novel approach for spectroscopic chemical identification using photonic crystal fiber in the terahertz regime. IEEE Sens. J. 18(2), 575–582 (2018b)

    Article  ADS  Google Scholar 

  • Islam, M.S., Sultana, J., Dinovitser, A., Ahmed, K., Ng, B.W.-H., Abbott, D.: Sensing of toxic chemicals using polarized photonic crystal fiber in the terahertz regime. Opt. Commun. 426, 341–347 (2018c)

    Article  ADS  Google Scholar 

  • Islam, M.S., Sultana, J., Ahmed, K., Islam, M.R., Dinovitser, A., Ng, W.-H., Abbott, D.: Terahertz detection of alcohol using a photonic crystal fiber sensor. Appl. Opt. 57(10), 2426–2433 (2018d)

    Article  ADS  Google Scholar 

  • Islam, M.S., Faisal, M., Razzak, S.M.A.: Dispersion flattened extremely high-birefringent kagome lattice elliptic core photonic crystal fiber in THz regime. Opt. Quant. Electron. 51, 35 (2019)

    Article  Google Scholar 

  • Islam, M.S., Cordeiro, C.M.B., Franco, M.A.R., Sultana, J., Cruz, A.L.S., Abbott, D.: Terahertz optical fibers. Opt. Express 28(11), 16089 (2020a)

    Article  ADS  Google Scholar 

  • Islam, M.R., Kabir, M.F., Talha, K.M.A., Arefin, M.S.: Highly birefringent honeycomb cladding terahertz fiber for polarization-maintaining applications. Opt. Eng. 59(1), 016113 (2020b)

    Article  ADS  Google Scholar 

  • Islam, M.R., Mamadou, M., Islam, M.S.: Design and analysis of a highly sensitive octagonal hollow core photonic crystal fiber for chemical sensing. J. Nanophotonics 14(3), 1–16 (2020c)

    Article  Google Scholar 

  • Islam, M.R., Mou, F.A., Rahman, M.M., Bhuiyan, M.I.H.: Hollow core photonic crystal ber for chemicals sensing in liquid analytes: design and analysis. Int. J. Mod. Phys. B 34, 2050259 (2020d)

    Article  ADS  Google Scholar 

  • Jeon, T.I., Zhang, J., Grischkowsky, D.: THz sommerfield wave propagation on a single metal wire. Appl. Phys. Lett. 86, 161904 (2005)

    Article  ADS  Google Scholar 

  • Kelishadi, R., Poursafa, P.: Air pollution and non-respiratory health hazards for children. Arch. Med. Sci. 6(4), 483–495 (2010)

    Article  Google Scholar 

  • Kelishadi, R., Mirghaffari, N., Poursafa, P., Gidding, S.S.: Lifestyle and environmental factors associated with inflammation, oxidative stress and insulin resistance in children. Atherosclerosis 203(1), 311–319 (2009)

    Article  Google Scholar 

  • Liu, Z., Tam, H.Y.: Fabrication and sensing applications of specialmicrostructured optical fibers. Sel. Top. Opt. Fiber Technol. Appl. (2018)

  • Liu, Z., Wu, C., Vincent Tse, M., Yaw Tam, H.: Fabrication, characterization, and sensing applications of a high-birefringence suspended-core fiber. J. Lightwave Technol. 32(11), 2113–2122 (2014)

    Article  ADS  Google Scholar 

  • Luo, J., Yanga, Q.-Q., Lu, S., Mhamdi, A., Mog, D.-C., Lyu, S.-S., Heng, Y.: A novel formulation and sequential solution strategy with time-spaceadaptive mesh refinement for efficient reconstruction of local boundaryheat flux. Int. J. Heat Mass Transf. 141, 1288–1300 (2019)

    Article  Google Scholar 

  • Mendis, R., Grischkowsky, D.: Plastic ribbon THz waveguides. J. Appl. Phys. 88(7), 4449–4451 (2000)

    Article  ADS  Google Scholar 

  • Mendis, R., Mittleman, D.M.: An investigation of lowest-order transverse-electric (TE 1) mode of the parallel plate waveguide for THz pulse propagation. Josa B 26(9), A6–A13 (2009)

    Article  ADS  Google Scholar 

  • Mou, F.A., Rahman, M.M., Islam, M.R., Bhuiyan, M.I.H.: Development of a photonic crystal fiber for THz wave guidance and environmental pollutants detection. Sens. Bio-Sens. Res. 29, 100346 (2020)

    Article  Google Scholar 

  • Nielsen, K., Rasmussen, H.K., Adam, A.J.L., Planken, P.C.M., Bang, O., Jepsen, P.U.: Bendable, low-loss Topas fibers for the terahertz frequency range. Opt. Express 17(10), 8592–8601 (2009)

    Article  ADS  Google Scholar 

  • Olyaee, S., Taghipour, F.: Ultra-flattened dispersion hexagonal photonic crystal fiber with low confinement loss and large effective area. IET Optoelectron. 6(2), 82–87 (2012)

    Article  Google Scholar 

  • Paul, B.K., Ahmed, K.: Analysis of terahertz waveguide properties of Q-PCF based on FEM scheme. Opt. Mater. 100, 109634 (2020)

    Article  Google Scholar 

  • Paul, B.K., Rajesh, E., Asaduzzaman, S., Islam, M.S., Ahmed, K., Amiri, I.S.: Design and analysis of slotted core photonic crystal fiber for gas sensing application. Res. Phys. 11, 643–650 (2018)

    Google Scholar 

  • Paul, B.K., Haque, M.A., Ahmed, K., Sen, S.: A novel hexahedron photonic crystal fiber in terahertz propagation: design and analysis. Photonics 6, 32 (2019)

    Article  Google Scholar 

  • Paul, B.K., Ahmed, K., Dhasarathan, V., Nguyen, T.K.: Oligoporous-core Quasi cladding photonic crystal fiber based microsensorfor alcohol detection. Phys. b Phys. Condens. Matter S0921–4526(20), 30116–30122 (2020)

    Google Scholar 

  • Podder, E., Hossain, M.B., Jibon, R.H., Bulbul, A.A.M.: Chemical sensing through photonic crystal fiber: sulfuric acid detection. Front. Optoelectron. 12, 372–438 (2019)

    Article  Google Scholar 

  • Pysz, D., Kujawa, I., Stepien, R., Klomczaki, M., Filipkowski, A., Franczyk, M., Kociszewski, L., Harasny, K., Buczynski, R.: Stack and draw fabrication of soft glass microstructured fiber optics. Bull. Pol. Acad. Sci. Tech. Sci. 62(4), 667–682 (2014)

    Google Scholar 

  • Rabee, A.S.H., Hameed, M.F.O., Heikal, A.M., Obayya, S.S.A.: Highly sensitive photonic crystal fiber gas sensor. Optik 188, 78–86 (2019)

    Article  ADS  Google Scholar 

  • Rahman, M.M., Mou, F.A., Mahmud, M.A.A., Bhuiyan, M.I.H.: Single mode porous core photonic crystal fiber for THz wave propagation with extremely low losses. In: Proceedings of IEEE R10 Humanitarian Technology Conference (R10-HTC) (47129), pp. 114–119, (2019)

  • Rahman, M.M., Mou, F.A., Islam, M.R., Bhuiyan, M.I.H.: Photonic crystal fiber based terahertz sensor for cholesterol detection in human blood and liquid foodstuffs. Sens. Bio-Sens. Res. 29, 100356 (2020a)

    Article  Google Scholar 

  • Rahman, M.M., Mou, F.A., Bhuiyan, M.I.H., Islam, M.R.: Design and characterization of a circular sectored core cladding structured photonic crystal fiber with ultra-low EML and flattened dispersion in the THz regime. Opt. Fiber Technol. 55, 102158 (2020b)

    Article  Google Scholar 

  • Rahman, A., Khaleque, A., Ali, M.Y., Rahman, M.T.: THz spectroscopic sensing of liquid chemicals using a photonic crystal fiber. OSA Continuum 3(11), 2982–2996 (2020c)

    Article  Google Scholar 

  • Rahman, M.M., Mou, F.A., Bhuiyan, M.I.H., Islam, M.R.: Refractometric THz sensing of blood components in a photonic crystal fiber platform. Braz. J. Phys. 52, 47 (2022)

    Article  ADS  Google Scholar 

  • Ramachandran, A., Babu, P.R., Senthilnathan, K.: Sensitivity analysis of steering-wheel gas sensor against diverse core air hole sizes and core materials in terahertz wave band. IOP Conf. Ser. Mater. Sci. Eng. 263(5), 052036 (2017)

    Article  Google Scholar 

  • Rana, S., Siraj Rakin, A., Hasan, M.R., Reza, M.S., Leonhard, R., Abbott, D., Subbaraman, H.: Low loss and flat dispersion Kagome photonic crystal fiber in the terahertz regime. Opt. Commun. 410, 452–456 (2018)

    Article  ADS  Google Scholar 

  • Razzak, S.A., Khan, M.A.G., Begum, F., Kaijage, S.: Guiding properties of a decagonal photonic crystal fiber. J. Microw. Optoelectron. Electromagn. Appl. (jmoe) 6(1), 44–49 (2007)

    Google Scholar 

  • Sen, S., Ahmed, K.: Design of terahertz spectroscopy based optical sensor for chemical detection. SN Appl. Sci. 1, 1215 (2020)

    Article  Google Scholar 

  • Sheikholeslami, M., Rezaeianjouybari, B., Darzi, M., Shafee, A., Nguyen, T.K.: Application of nano-refrigerant for boiling heat transfer enhancement employing an experimental study. Int. J. Heat Mass Transf. 141, 974–980 (2019)

    Article  Google Scholar 

  • Singer, A.M., Hameed, M.F.O., Heikal, A.M., El-Mikati, H.A., Obayya, S.S.A.: Highly birefringent slotted core photonic crystal fiber for terahertz waveguiding. Opt. Quantum Electron. 53, 9 (2021)

    Article  Google Scholar 

  • Strachan, C.J., Taday, P.F., Newnham, D.A., Gordon, K.C., Zeitler, J.A., Pepper, M., Rades, T.: Using terahertz pulsed spectroscopy to quantify phamaceutical polymorphism and crystallinity. J. Pham. Sci. 94, 837–846 (2005)

    Article  Google Scholar 

  • Tahhan, S.R., Aljobouri, H.K.: Sensing of illegal drugs by using photonic crystal fiber in terahertz regime. J. Opt. Commun. (2020)

  • Talataisong, W., Ismaeel, R., Sandoghchi, S.R., Rutirawut, T., Ntopley, G., Beresnaand, M., Bambilla, G.: Novel method for manufacturing optical fiber: extrusion and drawing of microstructured polymer optical fibers from a 3D printer. Opt. Express 26(24), 32007–32013 (2018)

    Article  ADS  Google Scholar 

  • Tonouchi, M.: Cutting-edge terahertz technology. Nat. Photon. 1(2), 97–105 (2007)

    Article  ADS  Google Scholar 

  • Wachter, M., Nagel, M., Kuruz, H.: Metallic slit waveguide for dispersion free low loss terahertz signal transmission. Appl. Phys. Lett. 90(6), 061111 (2007)

    Article  ADS  Google Scholar 

  • Wu, Z., Shi, Z., Xia, H., Zhou, X., Deng, Q., Huang, J., Jiang, X., Wu, W.: Design of highly birefringent and low-loss oligoporous-core THz photonic crystal fiber with single circular air-hole unit. IEEE Photon. J. 8, 4502711 (2016)

    Article  Google Scholar 

  • Wu, J., Li, S., Wang, X., Shi, M., Feng, X., Liu, Y.: Ultrahigh sensitivityrefractive index sensor of a D-shaped PCF based on surface plasmonresonance. Appl. Opt. 57(15), 4002–4007 (2018)

    Article  ADS  Google Scholar 

  • Yakasai, I.K., Abas, P.E., Suhaimi, H., Begum, F.: Low loss and highly birefringent photonic crystal fibre for terahertz applications. Opt. Int. J. Light Electron Opt. 206, 164321 (2020)

    Article  Google Scholar 

  • Zhang, P., Zhang, J., Yang, P., Dai, S., Wang, X., Zhang, W.: Fabrication of chalcogenide glass photonic crystalfibers with mechanical drilling. Opt. Fiber Technol. 26, 176–179 (2015)

    Article  ADS  Google Scholar 

Download references

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors until now.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Md. Moshiur Rahman.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rahman, M., Mou, F.A., Bhuiyan, M.I.H. et al. Design and characterization of a photonic crystal fiber for improved THz wave propagation and analytes sensing. Opt Quant Electron 54, 669 (2022). https://doi.org/10.1007/s11082-022-04057-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-022-04057-0

Keywords

Navigation