Skip to main content
Log in

Nanogap effects on plasmonic properties of dimer

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

In the field of plasmonics, the nanogap effect is often related to one aspect like the far-field resonance shift or near-field enhancement. In this study, we present a details analysis of the nanogap effect on plasmonic behaviours of the magneto-plasmonic dimer Ni–Ag and Ni–Au nanoparticles by taking the full advantages of DDA simulation. The sets of non-spherical dimer nanostructure viz. edge-to-edge (EE) and face-to-face (FF) and spherical dimer nanoparticles for plasmonic properties like LSPR peak position’s tunability as well as peak intensity at the maximum wavelength (λmax.) and near-field enhancement in Ni–Ag and Ni–Au heterodimer nanoparticles is studied. It is observed that the emerging spectra are found between the UV–visible regions (357–586 nm) for spherical dimer nanostructure while prolate dimers are in the UV–visible-Near Infrared region (345–817 nm) under both EE and FF configurations. The emergent wavelength-dependent spectra with varying nanogap between the dimer are red-shifted. The maximum plasmonic field enhancement is observed for Ni–Ag as compared to Ni–Au dimer nanoparticles under spherical and prolate geometry. It is found that the FF configuration of Ni–Ag and Ni–Au dimers nanoparticles has maximum field enhancement in comparison to the EE configuration. These results could have a big impact on how surface-enhanced spectroscopies and related plasmonic instruments based on E-field hot spots or intensity are being utilized.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data availability

The authors confirm that the data supporting the findings of this study are available within the manuscript.

References

  • Bansal, A., Verma, S.S.: Simulated study of plasmonic coupling in noble bimetallic alloy nanosphere arrays. AIP Adv. 4, 057104 (2014)

    Article  ADS  Google Scholar 

  • Bansal, A., Verma, S.S.: Optical properties of bimetallic (Ag-Cu) core-noble metal shell nanoparticles. J. Opt. 45, 7–10 (2016)

    Article  Google Scholar 

  • Bansal, A., Sekhon, J.S., Verma, S.S.: Scattering efficiency and LSPR tunability of bimetallic Ag, Au, and Cu nanoparticles. Plasmonics 9, 143–150 (2014)

    Article  Google Scholar 

  • Barbillon, G.: Nanoplasmonics: fundamentals and applications. InTech (2017)

    Book  Google Scholar 

  • Bhatia, P., Verma, S.S., Sinha, M.M.: Tunable optical properties of Ni-Ag and Ni-Au nanoparticles in magneto-plasmonic nanostructures, Optical and Quantum. Electronics 52, 1–12 (2020)

    Google Scholar 

  • Bhatia, P., Verma, S.S., Sinha, M.M.: Optical absorption analysis of core-shell type Ni@ Ag/Au & NiFe@ Ag/Au magneto-plasmonic nanostructures. J. Quant. Spectrosc. Radiat. Transfer 268, 107646 (2021)

    Article  Google Scholar 

  • Catchpole, K.A., Polman, A.: Plasmonic solar cells. Opt. Express 16, 21793–21800 (2008)

    Article  ADS  Google Scholar 

  • Ciraci, C., Urzhumov, Y., Smith, D.R.: Effects of classical nonlocality on the optical response of three-dimensional plasmonic nanodimers. J. Opt. Soc. Am. B 30, 2731–2736 (2013)

    Article  ADS  Google Scholar 

  • Demchuk, A., Bolesta, I., Kushnir, O., Kolych, I.: The computational studies of plasmon interaction. Nanoscale Res. Lett. 12, 1–7 (2017)

    Article  Google Scholar 

  • Devaraj, V., Choi, J., Kim, C.S., Oh, J.W., Hwang, Y.H.: Numerical analysis of nanogap effects in metallic nano-disk and nano-sphere dimers: high near-field enhancement with large gap sizes. J. Korean Phys. Soc. 72, 599–603 (2018)

    Article  ADS  Google Scholar 

  • Draine B., T., Flatau P., J.: User guide for the discrete dipole approximation code DDSCAT 7.3, "arXiv preprint arXiv. (2013) 1305.6497.

  • Draine, B.T., Flatau, P.J.: Discrete-dipole approximation for scattering calculations. J. Opt. Soc. Am. A 11(4), 1491 (1994). https://doi.org/10.1364/JOSAA.11.001491

    Article  ADS  Google Scholar 

  • Draine, B.T., Flatau, P.J.: Discrete-dipole approximation for periodic targets: theory and tests. J. Opt. Soc. Am. A 25, 2693–2703 (2008)

    Article  ADS  Google Scholar 

  • Flatau, P.J., Draine, B.T.: Fast near field calculations in the discrete dipole approximation for regular rectilinear grids. Opt. Express 20, 1247–1252 (2012)

    Article  ADS  Google Scholar 

  • Gao, Y., Zhang, R., Cheng, J.C., Liaw, J.W., Ma, C.: Optical properties of plasmonic dimer, trimer, tetramer and pentamer assemblies of gold nanoboxes. J. Quant. Spectrosc. Radiat. Transfer 125(2013), 23–32 (2013)

    Article  ADS  Google Scholar 

  • Hooshmand, N., El-Sayed, M.A.: Collective multipole oscillations direct the plasmonic coupling at the nanojunction interfaces. Proc. Natl. Acad. Sci. 116, 19299–19304 (2019)

    Article  ADS  Google Scholar 

  • Hooshmand, N., Jain, P.K., El-Sayed, M.A.: Plasmonic spheroidal metal nanoshells showing larger tunability and stronger near fields than their spherical counterparts: an effect of enhanced plasmon coupling. J. Phys. Chem. Lett. 2, 374–378 (2011)

    Article  Google Scholar 

  • Hooshmand, N., Bordley, J.A., El-Sayed, M.A.: The sensitivity of the distance dependent plasmonic coupling between two nanocubes to their orientation: edge-to-edge versus face-to-face. J. Phys. Chem. C 120, 4564–4570 (2016)

    Article  Google Scholar 

  • Hossain, M.K., Kitahama, Y., Huang, G.G., Han, X., Ozaki, Y.: Surface-enhanced Raman scattering: realization of localized surface plasmon resonance using unique substrates and methods. Anal. Bioanal. Chem. 394, 1747–1760 (2009)

    Article  Google Scholar 

  • Hulst, H.C., van de Hulst, H.C.: Light scattering by small particles. Courier Corporation (1981)

    MATH  Google Scholar 

  • Jain, P.K., Lee, K.S., El-Sayed, I.H., El-Sayed, M.A.: Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine. J. Phys. Chem. B 110, 7238–7248 (2006)

    Article  Google Scholar 

  • Jain, P.K., Huang, X., El-Sayed, I.H., El-Sayed, M.A.: Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine. Acc. Chem. Res. 41, 1578–1586 (2008)

    Article  Google Scholar 

  • Ji, X., Yang, W.: High-purity gold nanocrystal dimers: scalable synthesis and size-dependent plasmonic and Raman enhancement. Chem. Sci. 5, 311–323 (2014)

    Article  Google Scholar 

  • Jiang, M.M., Chen, H.Y., Li, B.H., Liu, K.W., Shan, C.X., Shen, D.Z.: Hybrid quadrupolar resonances stimulated at short wavelengths using coupled plasmonic silver nanoparticle aggregation. J. Mater. Chem. C 2, 56–63 (2013)

    Article  Google Scholar 

  • Johnson, P.B., Christy, R.W.: Optical constants of the noble metals. Phys. Rev. B 6, 4370–4379 (1972)

    Article  ADS  Google Scholar 

  • Johnson, P.B., Christy, R.W.: Optical constants of transition metals: Ti, v, cr, mn, fe, co, ni, and pd. Phys. Rev. B 9, 5056–5070 (1974)

    Article  ADS  Google Scholar 

  • Katyal, J.: Al-Au Heterogeneous dimer-trimer nanostructure for SERS. Nanosci. Nanotechnol. 10, 21–28 (2020)

    Google Scholar 

  • Kelly, K.L., Coronado, E., Zhao, L.L., Schatz, G.C.: The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment. J. Phys. Chem. B 107, 668–677 (2003)

    Article  Google Scholar 

  • Khlebtsov, B., Melnikov, A., Zharov, V., Khlebtsov, N.: Absorption and scattering of light by a dimer of metal nanospheres: comparison of dipole and multipole approaches. Nanotechnology 17, 1437 (2006)

    Article  ADS  Google Scholar 

  • Li, W.: Physics models of plasmonics: single nanoparticle, complex single nanoparticle, nanodimer, and single nanoparticle over metallic thin film. Plasmonics 13, 997–1014 (2018)

    Article  Google Scholar 

  • Link, S., Wang, Z.L., El-Sayed, M.A.: Alloy formation of gold-silver nanoparticles and the dependence of the plasmon absorption on their composition. J. Phys. Chem. B 103, 3529–3533 (1999)

    Article  Google Scholar 

  • Luo, D., Shi, B., Zhu, Q., Qian, L., Qin, Y., Xie, J.: Optical properties of Au-Ag nanosphere dimer: influence of interparticle spacing. Opt. Commun. 458, 124746 (2020a)

    Article  Google Scholar 

  • Luo, D., Shi, B., Zhu, Q., Qian, L., Qin, Y., Xie, J.: Optical properties of Au–Ag nanosphere dimer: influence of interparticle spacing. Opt. Commun. 458, 124746 (2020b)

    Article  Google Scholar 

  • Moores, A., Goettmann, F.: The Plasmon band in noble metal nanoparticles: an introduction to theory and applications. New J Chem 30, 1121–1132 (2006)

    Article  Google Scholar 

  • Noguez, C.: Surface plasmons on metal nanoparticles: the influence of shape and physical environment. J. Phys. Chem. C 111, 3806–3819 (2007)

    Article  Google Scholar 

  • Ross, M.B., Mirkin, C.A., Schatz, G.C.: Optical properties of one-, two-, and three-dimensional arrays of plasmonic nanostructures. J. Phys. Chem. C 120, 816–830 (2016)

    Article  Google Scholar 

  • Sekhon, J.S., Verma, S.S.: Rational selection of nanorod plasmons: material, size, and shape dependence mechanism for optical sensors. Plasmonics 7, 453–459 (2012)

    Article  Google Scholar 

  • Toroghi, S., Kik, P.G.: Cascaded plasmon resonant field enhancement in nanoparticle dimers in the point dipole limit. Appl. Phys. Lett. 100, 183105 (2012)

    Article  ADS  Google Scholar 

  • Ventra, M., Evoy, S., Heflin, J.R.: Introduction to nanoscale science and technology. Springer (2006)

    Google Scholar 

  • Verbruggen, S.W., Keulemans, M., Martens, J.A., Lenaerts, S.: Predicting the surface plasmon resonance wavelength of gold-silver alloy nanoparticles. J. Phys. Chem. C 117, 19142–19145 (2013)

    Article  Google Scholar 

  • Yan, Y., Deng, C., Yan, L., Tang, Z., Tang, S., Xu, X.: Composition dependence of magneto-optical response in Ag/Co dimer nanodot arrays. J. Magn. Magn. Mater. 419, 553–558 (2016)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The author (P. Bhatia) thanks B. T. Draine and P. J. Flatau for using their DDA code DDSCAT 7.3.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pradeep Bhatia.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing for financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhatia, P., Verma, S.S. & Sinha, M.M. Nanogap effects on plasmonic properties of dimer. Opt Quant Electron 54, 663 (2022). https://doi.org/10.1007/s11082-022-04052-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-022-04052-5

Keywords

Navigation