Skip to main content

Advertisement

Log in

Configuration analysis of SnS based solar cells for high-efficiency devices

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

An SnS/CdS heterostructure-based solar cell has been simulated and evaluated for possible solar cell application. SnS being an earth-abundant, nontoxic, stable inorganic material with suitable optoelectronic properties, is potential material for solar cell application. A three-step optimization process has been undertaken to improve the performance of SnS-based solar cells. Initially, SnS/CdS junction is modified to a p–i–n structure by introducing an intrinsic layer in between SnS/CdS. The introduction of an intrinsic layer increases the efficiency from 1.32 to 6.85%. Further, the structure has been optimized by employing a conduction band offset at the p–n interface. Following this process, the efficiency further improved to 7.05%. Finally, the heterostructure has been optimized by adding back surface field in the device configuration. The final simulated heterostructure after all three optimizations shows efficiency enhancement up to 8.15% from its benchmarked 1.32% value. The optimized device configuration p+-SnS/SnS/i/CdS/ZnO presents a crucial guideline for experimentalist to fabricate high-efficiency SnS solar cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Ahmmed, S., Aktar, A., Hossain, J., Ismail, A.B.M.: Enhancing the open circuit voltage of the SnS based heterojunction solar cell using NiO HTL. Solar Energy 207, 693–702 (2020)

    Article  ADS  Google Scholar 

  • Aida, Y., Depredurand, V., Larsen, J.K., Arai, H., Tanaka, D., Kurihara, M., Siebentritt, S.: Cu-rich CuInSe2 solar cells with a Cu-poor surface. Progr. Photovolt. Res. Appl. 23(6), 754–764 (2015)

    Article  Google Scholar 

  • Albers, W., Haas, C., Vink, H., Wasscher, J.: Investigations on SnS. J. Appl. Phys. 32(10), 2220–2225 (1961)

    Article  ADS  Google Scholar 

  • Baig, F., Khattak, Y.H., Ullah, S., Soucase, B.M., Beg, S., Ullah, H.: Numerical analysis a guide to improve the efficiency of experimentally designed solar cell. Appl. Phys. A 124, 471 (2018). https://doi.org/10.1007/s00339-018-1877-x

    Article  ADS  Google Scholar 

  • Baig, F., Ullah, H., Khattak, Y.H., Soucase, B.M.: Numerical analysis of SnS Photovoltaic cells. In Renewable and Sustainable Energy Conference (IRSEC), 2016 International 2016 Nov 14 (pp. 596-600). IEEE

  • Burgelman, M., Verschraegen, J., Minnaert, B., Marlein, J.: Numerical simulation of thin film solar cell: practical exercises with SCAPS, Proceeding of NUMOS (2007)

  • Cho, J.Y., Sinha, S., Gang, M.G., Heo, J.: Controlled thickness of a chemical-bath-deposited CdS buffer layer for a SnS thin film solar cell with more than 3% efficiency. J. Alloys Compd. 796, 160–166 (2019)

    Article  Google Scholar 

  • Cho, J.Y., Kim, S., Nandi, R., Jang, J., Yun, H.S., Enkhbayar, E., Kim, J.H., Lee, D.K., Chung, C.H., Kim, J., Heo, J.: Achieving over 4% efficiency for SnS/CdS thin-film solar cells by improving the heterojunction interface quality. J. Mater. Chem. A 8(39), 20658–20665 (2020)

    Article  Google Scholar 

  • Dai Nguyen, T., Hung, N.M., Arepalli, V.K., Kim, J., Raj, M., Nguyen, T.T.O.: Synthesis of Ag-embedded SnS films by the RF method for photovoltaic applications. Surfaces Interfaces 25, 101151 (2021). https://doi.org/10.1016/j.surfin.2021.101151

    Article  Google Scholar 

  • Garin, R., Basak, A., Singh, U.P.: Study of thickness and temperature dependence on the performance of SnS based solar cell by SCAPS 1D. Mater. Today Proc. 39(5), 1833–1837 (2021)

    Article  Google Scholar 

  • Jaramillo, R., Steinmann, V., Yang, C., Hartman, K., Chakraborty, R., Poindexter, J.R., Castillo, M.L., Gordon, R., Buonassisi, T.: making record-efficiency SnS solar cells by thermal evaporation and atomic layer deposition. J. Vis. Exp. (2015) e52705. https://doi.org/10.3791/52705

    Article  Google Scholar 

  • Kang, J.Y., Kwon, S.M., Yang, S.H., Cha, J.H., Bae, J.A., Jeon, C.W.: Control of the microstructure of SnS photovoltaic absorber using a seed layer and its impact on the solar cell performance. J. Alloys Compd. 711, 294–299 (2017)

    Article  Google Scholar 

  • Kawano, Y., Chantana, J., Minemoto, T.: Impact of growth temperature on the properties of SnS film prepared by thermal evaporation and its photovoltaic performance. Curr. Appl. Phys. 15(8), 897–901 (2015)

    Article  ADS  Google Scholar 

  • Klenk, R.: Characterisation and modelling of chalcopyrite solar cells. Thin solid films 387(1–2), 135–140 (2001)

    Article  ADS  Google Scholar 

  • Knorr, T., Hoffman, R.: Dependence of geometric magnetic anisotropy in thin iron films. Phys. Rev. 113(4), 1039 (1959). https://doi.org/10.1103/PhysRev.113.1039

    Article  ADS  Google Scholar 

  • Kumar, A: Efficiency enhancement of CZTS solar cells using structural engineering. Superlatt. Microstruct. 153, 106872 (2021). https://doi.org/10.1016/j.spmi.2021.106872

    Article  Google Scholar 

  • Kumar, A., Ranjan, P.: Computational analysis of chalcogenides as an inorganic hole transport layer in perovskite solar cells. Opt. Quant. Electron. 53(9), 1–15 (2021). https://doi.org/10.1007/s11082-021-03186-2

    Article  Google Scholar 

  • Kumar, A., Thakur, A.D.: Role of contact work function, back surface field, and conduction band offset in Cu2ZnSnS4 solar cell. Jpn. J. Appl. Phys. 57, 08RC05 (2018). https://doi.org/10.7567/JJAP.57.08RC05

    Article  Google Scholar 

  • Kumar, A., Thakur, A.D.: Analysis of SnS2 buffer layer and sns back surface layer based CZTS solar cells using SCAPS. (2015) arXiv:1510.05092

  • Mangan, N.M., Brandt, R.E., Steinmann, V., Jaramillo, R., Yang, C., Poindexter, J.R., Chakraborty, R., Park, H.H., Zhao, X., Gordon, R.G., Buonassisi, T.: Framework to predict optimal buffer layer pairing for thin film solar cell absorbers: a case study for tin sulfide/zinc oxysulfide. Journal of Applied Physics 118(11), 115102 (2015)

    Article  ADS  Google Scholar 

  • Minemoto, T., Murato, M.: Theoretical analysis on effect of band offsets in perovskite solar cells. Solar Energy Mater Solar Cells 133, 8–14 (2015)

    Article  Google Scholar 

  • Pettersson, J., Platzer-Björkman, C., Zimmermann, U., Edoff, M.: Baseline model of graded-absorber Cu(In, Ga)Se2 solar cells applied to cells with Zn1−xMgxO buffer layers. Thin Solid Films 519, 7476–7480 (2011)

    Article  ADS  Google Scholar 

  • Pianezzi, F., Reinhard, P., Chirilă, A., Bissig, B., Nishiwaki, S., Buecheler, S., Tiwari, A.N.: Unveiling the effects of post-deposition treatment with different alkaline elements on the electronic properties of CIGS thin film solar cells. Phys. Chem. Chem. Phys. 16(19), 8843–8851 (2014)

    Article  Google Scholar 

  • Reddy, K.R., Reddy, N.K., Miles, R.W.: Photovoltaic properties of SnS based solar cells. Solar Energy Mater. Solar Cells 90(18–19), 3041–3046 (2006)

    Article  Google Scholar 

  • Reddy, V.R.M., Cho, H., Gedi, S., Reddy, K.R., Kim, W.K., Park, C.: Effect of sulfurization temperature on the efficiency of SnS solar cells fabricated by sulfurization of sputtered tin precursor layers using effusion cell evaporation. J. Alloys Compd. 806, 410–417 (2019)

    Article  Google Scholar 

  • Sinsermsuksakul, P., Heo, J., Noh, W., Hock, A.S., Gordon, R.G.: Atomic layer deposition of tin monosulfde thin films. Adv. Energy Mater. 1(6), 1116–1125 (2011)

    Article  Google Scholar 

  • Sinsermsuksakul, P., Sun, L., Lee, S.W., Park, H.H., Kim, S.B., Yang, C., Gordon, R.G.: Overcoming efficiency limitations of SnS-based solar cells. Adv. Energy Mater. 4, 1400496 (2014). https://doi.org/10.1002/aenm.201400496

    Article  Google Scholar 

  • Turcu, M., Rau, U.: Fermi level pinning at CdS/Cu(In, Ga)(Se, S)2 interfaces: effect of chalcopyrite alloy composition. J. Phys. Chem. Solid. 64, 1591–1595 (2003)

    Article  ADS  Google Scholar 

  • Ullah, H., Mari, B.: Numerical analysis of SnS based polycrystalline solar cells. Superlatt. Microstruct. 72, 148–155 (2014)

    Article  ADS  Google Scholar 

  • Verschraegen, J., Burgelman, M.: Numerical modeling of intra-band tunneling for heterojunction solarcell in SCAPS. Thin Solid Films 515, 6276–6279 (2007)

    Article  ADS  Google Scholar 

  • Xu, J., Yang, Y.: Study on the performances of SnS heterojunctions by numerical analysis. Energy Convers. Manage. 78, 260–265 (2014)

    Article  Google Scholar 

  • Yadav, R.K., Pawar, P.S., Neerugatti, K.E., Nandi, R., Cho, J.Y., Heo, J.: Effect of intrinsic ZnO thickness on the performance of SnS/CdS-based thin-film solar cells. Curr. Appl. Phys. 31, 232–238 (2021)

    Article  ADS  Google Scholar 

Download references

Acknowledgment

The authors acknowledge Dr. Marc Burgelman for providing SCAPS software package.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Atul Kumar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, A., Prabu, R.T. & Das, A. Configuration analysis of SnS based solar cells for high-efficiency devices. Opt Quant Electron 54, 521 (2022). https://doi.org/10.1007/s11082-022-03940-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-022-03940-0

Keywords

Navigation