Skip to main content
Log in

Numerical simulation using optical ring fiber and its effect on improving communication at different wavelengths

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

with regarding to the development of technology and the use of polymeric composites in the telecommunications industry, there has been a tremendous advancement in data exchange over long distances. consequently, optical fiber telecommunications emerged which is able to response to communication need of data in high bit rate conditions. But, one of the remarkable drawbacks with polymeric optical fibers is their limited bandwidth. Hence to overcome this problem, we reporte a novel design of hollow ring core polymeric optical fiber with polystyrene core and ethylene propylene florin cladding which can provide stable support for high bandwidth data transmission. The simulation results demonstrate that the hollow ring core polymeric optical fiber has a high potential for data transferring at high speed and low latency.moreover, the results show new reported design of polymeric optical fiber at low wavelength has a larger and flatter negative dispersion than glass-based ring fibers. additionally it has been found that the dispersion index range in the range of wavelengths between 1.11 and 1.369 µm is negative, which reduces the slope delay.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

All data included in this paper are available upon request by contact with the contact corresponding author.

References

  • Agrawal, G.P.: Fiber-optic communication systems, vol. 222. Wiley, New York (2012)

    Google Scholar 

  • Bahadoran, M., Afroozeh, A., Ali, J and Yupapin, P.P.: Slow light generation using microring resonators for optical buffer application, Opt. Eng. 51 (4), 044601(2012)

  • Bozinovic, N., Yue, Y., Ren, Y., Tur, M., Kristensen, P., Huang, H., et al.: Terabit-scale orbital angular momentum mode division multiplexing in fibers. Science 340(6140), 1545–1548 (2013)

    Article  ADS  Google Scholar 

  • Brunet, C., Ung, B., Wang, L., Messaddeq, Y., LaRochelle, S., Rusch, L.A.: Design of a family of ring-core fibers for OAM transmission studies. Opt. Express 23(8), 10553–10563 (2015)

    Article  ADS  Google Scholar 

  • Chen, X., Wang, T., Ying, R., Cao, Z.: A fault diagnosis method considering meteorological factors for transmission networks based on P systems. Entropy (2021). https://doi.org/10.3390/e23081008

    Article  MathSciNet  Google Scholar 

  • Chen, Z., Tang, J., Zhang, X.Y., So, D. K. C., Jin, S., Wong, K.: Hybrid Evolutionary-Based Sparse Channel Estimation for IRS-Assisted mmWave MIMO Systems. IEEE Trans. Wirel. Commun 21(3), 1586–1601 (2022). https://doi.org/10.1109/TWC.2021.3105405

  • Dorosz, J., Romaniuk, R.S.: Development of optical fiber technology in Poland. In: Optical Fibers and Their Applications 2011, vol. 8010, p. 801002. International Society for Optics and Photonics (2011)

  • Duy, H., Dengy, Y., Xueyz, J., Mengyz, D., Zhaoy, Q., Xuy, Z.: Robust Online CSI Estimation in a Complex Environment. IEEE Trans. Wirel. Commun 1(2022). https://doi.org/10.1109/TWC.2022.3165588

  • Feng, Y., Zhang, B., Liu, Y., Niu, Z., Dai, B., Fan, Y., Chen, X.: A 200-225-GHz Manifold-Coupled Multiplexer Utilizing Metal Wave guides. IEEE Trans. n.a. n.a. Tech. 1 (2021). https://doi.org/10.1109/TMTT.2021.3119316

  • Golowich, S.E., Kristensen, P., Bozinovic, N., Gregg, P., Ramachandran, S.: Fibers supporting orbital angular momentum states for information capacity scaling. In: Frontiers in Optics, pp. FW2D-2. Optical Society of America (2012)

  • Gregg, P., Kristensen, P., Ramachandran, S.: Conservation of orbital angular momentum in air-core optical fibers: erratum. Optica 4(9), 1115–1116 (2017)

    Article  ADS  Google Scholar 

  • Gregg, P., Kristensen, P., Golowich, S.E., Olsen, J.Ø., Steinvurzel, P., Ramachandran, S.: Stable transmission of 12 OAM states in air-core fiber. In: CLEO: 2013, pp. 1–2. IEEE (2013)

  • Grigorev, V.V., Kravtsov, V.E., Mityurev, A.K., Savkin, K.B., Tikhomirov, S.V.: Transmission of highly stable time signals over optical fiber communication lines. Measur. Tech. 61(10), 1018–1021 (2019)

    Article  Google Scholar 

  • Guo, L., Ye, C., Ding, Y., Wang, P.: Allocation of centrally switched fault current limiters enabled by 5G in transmission system. IEEE Trans. Power Deliv. 36(5), 3231–3241 (2021). https://doi.org/10.1109/TPWRD.2020.3037193

    Article  Google Scholar 

  • Koike, Y., Inoue, A.: High-speed graded-index plastic optical fibers and their simple interconnects for 4K/8K video transmission. J. Lightw. Technol. 34(6), 1551–1555 (2016)

    Article  ADS  Google Scholar 

  • Liu, J., MAO, S., Song, S., Huang, L., Belfiore, L. A., Tang, J.: Towards applicable photoacoustic micro-fluidic pumps: Tunable excitation wavelength and improved stability by fabrication of Ag-Au alloying nanoparticles. J. alloy. compd 884(2021). https://doi.org/10.1016/j.jallcom.2021.161091

  • Li, S., Wang, J.: A compact trench-assisted multi-orbital-angular-momentum multi-ring fiber for ultrahigh-density space-division multiplexing (19 rings × 22 modes). Sci. Rep. 4, 3853 (2014)

    Article  ADS  Google Scholar 

  • Liu, J., Mao, S., Song, S., Huang, L., Belfiore, L.A., et al.: Towards applicable photoacoustic micro-fluidic pumps: tunable excitation wavelength and improved stability by fabrication of Ag–Au alloying nanoparticles. J. Alloys Compd. (2021). https://doi.org/10.1016/j.jallcom.2021.161091

    Article  Google Scholar 

  • Li, Y., Du, L., & Wei, D.: Multiscale CNN Based on Component Analysis for SAR ATR. IEEE Trans Geosci. Remote. sens 60, 1–12(2022). https://doi.org/10.1109/TGRS.2021.3100137

  • Matsuura, M., Furukawa, R., Matsumoto, Y., Inoue, A., Koike, Y.: Evaluation of modal noise in graded-index silica and plastic optical fiber links for radio over multimode fiber systems. Opt. Express 22(6), 6562–6568 (2014)

    Article  ADS  Google Scholar 

  • Milby, E., Rodrigues, T., Jo, J., Schwartz, J., Driscoll, D., Cucchiaro, P., et al.: Design of space laser communication optical module. In: Free-Space Laser Communications XXXII, vol. 11272, p. 112720I. International Society for Optics and Photonics (2020)

  • Ni, T., Liu, D., Xu, Q., Huang, Z., Liang, H., et al.: Architecture of Cobweb-based redundant TSV for clustered faults. IEEE Trans. Very Large Scale Integr. VLSI Syst. 28(7), 1736–1739 (2020). https://doi.org/10.1109/TVLSI.2020.2995094

    Article  Google Scholar 

  • Ni, T., Yang, Z., Chang, H., Zhang, X., Lu, L., Yan, A., et al.: A novel TDMA-based fault tolerance technique for the TSVs in 3D-ICs using honeycomb topology. IEEE Trans. Emerg. Top. Comput. 9(2), 724–734 (2021). https://doi.org/10.1109/TETC.2020.2969237

    Article  Google Scholar 

  • Peters, K.: Polymer optical fiber sensors—a review. Smart Mater. Struct. 20(1), 013002 (2010)

    Article  ADS  Google Scholar 

  • Ramachandran, S., Kristensen, P.: Optical vortices in fiber. Nanophotonics 2(5–6), 455–474 (2013)

    Article  ADS  Google Scholar 

  • Ramachandran, S., Gregg, P., Kristensen, P., Golowich, S.E.: On the scalability of ring fiber designs for OAM multiplexing. Opt. Express 23(3), 3721–3730 (2015)

    Article  ADS  Google Scholar 

  • Shi, M., Zhu, H., Yang, C., Xu, J., Yan, C.: Chemical reduction-induced fabrication of graphene hybrid fibers for energy-dense wire-shaped supercapacitors. Chin. J. Chem. Eng. (2021). https://doi.org/10.1016/j.cjche.2021.05.045

    Article  Google Scholar 

  • Sun, L., Li, C., Zhang, C., Liang, T., Zhao, Z.: The strain transfer mechanism of fiber bragg grating sensor for extra large strain monitoring. Sensors 19(8), 1851 (2019). https://doi.org/10.3390/s19081851

    Article  ADS  Google Scholar 

  • Sun, Q., Lin, K., Si, C., Xu, Y., Li, S., Gope, P. (2022). A Secure and Anonymous Communicate Scheme over the Internet of Things. ACM Trans. Sens. Netw. https://doi.org/10.1145/3508392

  • Tian, W., Zhang, H., Zhang, X., Xi, L., Zhang, W., Tang, X.: A circular photonic crystal fiber supporting 26 OAM modes. Opt. Fiber Technol. 30, 184–189 (2016)

    Article  ADS  Google Scholar 

  • Ung, B., Vaity, P., Wang, L., Messaddeq, Y., Rusch, L.A., LaRochelle, S.: Few-mode fiber with inverse-parabolic graded-index profile for transmission of OAM-carrying modes. Opt. Express 22(15), 18044–18055 (2014)

    Article  ADS  Google Scholar 

  • Waghmare, M., Reddy, K.T.V.: Design and modal analysis of photonic crystal fiber for dispersion compensation over broadband range. J. Microw. Optoelectron. Electromagn. Appl. 15(4), 365–379 (2016)

    Article  Google Scholar 

  • Wang, T., Liu, W., Zhao, J., Guo, X., Terzija, V.: A rough set-based bio-inspired fault diagnosis method for electrical substations. Int. J. Electr. Power Energy Syst. 119, 105961 (2020a). https://doi.org/10.1016/j.ijepes.2020.105961

    Article  Google Scholar 

  • Wang, T., Wei, X., Wang, J., Huang, T., Peng, H., Song, X., et al.: A weighted corrective fuzzy reasoning spiking neural P system for fault diagnosis in power systems with variable topologies. Eng. Appl. Artif. Intell. 92, 103680 (2020b). https://doi.org/10.1016/j.engappai.2020.103680

    Article  Google Scholar 

  • Webb, D.J.: Fibre Bragg grating sensors in polymer optical fibres. Meas. Sci. Technol. 26(9), 092004 (2015)

    Article  ADS  Google Scholar 

  • Wei, G., Lin, X., Si, Z., Wang, D., Wang, X., Fan, X.,... Zhao, W.: Optically Induced Phase Change for Magnetoresistance Modulation. Adv. n.a. technol. (Online), 3(3), 1900104 (2020). https://doi.org/10.1002/qute.201900104

  • Woyessa, G., Nielsen, K., Stefani, A., Markos, C., Bang, O.: Temperature insensitive hysteresis free highly sensitive polymer optical fiber Bragg grating humidity sensor. Opt. Express 24(2), 1206–1213 (2016)

    Article  ADS  Google Scholar 

  • Xu, X., Nieto-Vesperinas, M.: Azimuthal imaginary poynting momentum density. Phys. Rev. Lett. 123(23), 233902 (2019). https://doi.org/10.1103/PhysRevLett.123.233902

    Article  ADS  Google Scholar 

  • Yang, G., Feng, X., Wang, W., OuYang, Q., & Liu, L.:. Effective interlaminar reinforcing and delamination monitoring of carbon fibrous composites using a novel nano-carbon woven grid. Compos. Sci. Technol. 213, 108959 (2021). https://doi.org/10.1016/j.compscitech.2021.108959

  • Yang, W., Lin, Y., Chen, X., Xu, Y., Song, X.: Wave mixing and high-harmonic generation enhancement by a two-color field driven dielectric metasurface. Chin. Opt. Lett. 19(12), 5 (2021). https://doi.org/10.3788/COL202119.123202

    Article  Google Scholar 

  • Ye, J., Li, Y., Han, Y., Deng, D., Guo, Z., Gao, J., et al.: Excitation and separation of vortex modes in twisted air-core fiber. Opt. Express 24(8), 8310–8316 (2016)

    Article  ADS  Google Scholar 

  • Zhou, G., Zhou, G., Chen, C., Xu, M., Xia, C., Hou, Z.: Design and analysis of a microstructure ring fiber for orbital angular momentum transmission. IEEE Photonics J. 8(2), 1–12 (2016)

    Google Scholar 

  • Zhang, J., Zhu, C., Zheng, L., & Xu, K.: ROSEFusion: random optimization for online dense reconstruction under fast camera motion. ACM trans. n.a, 40(4), 1–17 (2021). https://doi.org/10.1145/3450626.3459676

Download references

Acknowledgements

Not applicable.

Funding

This research did not receive any specific grant from funding agencies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdolkarim Afroozeh.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Afroozeh, A., Parizi, M.S. & Abdolhosseini, S. Numerical simulation using optical ring fiber and its effect on improving communication at different wavelengths. Opt Quant Electron 54, 592 (2022). https://doi.org/10.1007/s11082-022-03928-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-022-03928-w

Keywords

Navigation