Abstract
This paper proposes a simple, fabrication-friendly, extremely low loss photonic crystal fiber sensor in accordance with the surface plasmon resonance. Our proposed sensor has a di-material plasmonic layer of 20 nm Gold (Au) and 10 nm Titanium Dioxide (TiO2). Variations of the sensor's optical parameters are detected through the Finite Element Method of COMSOL Multiphysics (v. 5.5). After optimizing all cross-sectional parameters, the sensor model has gained maximum Amplitude Sensitivity and Wavelength Sensitivity of 4646.1 RIU−1 and 10,000 nm/RIU with 2.15 × 10–6 RIU and 1.00 × 10–5 RIU sensor resolutions, respectively, within 1.33–1.42 RI range for analyte sensing. Besides, a shallow maximum confinement loss magnitude of 0.8125 dB/cm at 1.43 RI was observed, indicating the possibility of having excellent sensor length. Moreover, decent sensitivities were obtained in terms of strain, temperature, and magnetic field strength (MFS) sensing with the corresponding maximum values of 4.0 pm/µε (0.004 nm/µε), 1.00 nm/°C, and 160 pm/Oe (0.16 nm/Oe), respectively. Our proposed sensor shows remarkable performance in sensing any minute alterations in analyte RI, strain, temperature, and MFS, making it a unique and significant addition to the scientific, biomedical, and industrial fields.
Similar content being viewed by others
References
Ahmmed, R., Ahmed, R., Razzak, S. M. A.: “Design of large negative dispersion and modal analysis for hexagonal, square, FCC and BCC photonic crystal fibers,” in 2013 International Conference on Informatics, Electronics and Vision (ICIEV), May 2013, pp. 1–6, doi: https://doi.org/10.1109/ICIEV.2013.6572577
Akter, S., Abdur Razzak, S.M.: Highly sensitive open-channels based plasmonic biosensor in visible to near-infrared wavelength. Results Phys. (2019). https://doi.org/10.1016/j.rinp.2019.102328
Al Mahfuz, M., Hossain, M.A., Haque, E., Hai, N.H., Namihira, Y., Ahmed, F.: Dual-core photonic crystal fiber-based plasmonic RI sensor in the visible to near-IR operating band”. IEEE Sens. J. 20(14), 7692–7700 (2020). https://doi.org/10.1109/jsen.2020.2980327
Aminul Islam, M., Rakibul Islam, M., Moinul Islam Khan, M., Chowdhury, J.A., Mehjabin, F., Islam, M.: Highly birefringent slotted core photonic crystal fiber for THz wave propagation”. Phys. Wave Phenom. 28(1), 58–67 (2020). https://doi.org/10.3103/S1541308X20010021
Aoni, R.A, Ahmed, R., Abdur Razzak, S. M.: “Design and Simulation of Duel-Concentric-Core Photonic Crystal Fiber for Dispersion Compensation,” in 2013 CIOMP-OSA Summer Session on Optical Engineering, Design and Manufacturing, 2013, p. Tu2, https://doi.org/10.1364/SUMSESSION.2013.Tu2
Caucheteur, C., Guo, T., Albert, J.: Review of plasmonic fiber optic biochemical sensors: improving the limit of detection. Anal. Bioanal. Chem. 407(14), 3883–3897 (2015). https://doi.org/10.1007/s00216-014-8411-6
Chakma, S., Khalek, M.A., Paul, B.K., Ahmed, K., Hasan, M.R., Bahar, A.N.: Gold-coated photonic crystal fiber biosensor based on surface plasmon resonance: design and analysis. Sens. Bio-Sensing Res. 18, 7–12 (2018). https://doi.org/10.1016/j.sbsr.2018.02.003
Dash, J.N., Das, R.: SPR based magnetic-field sensing in microchannelled PCF: a numerical approach. J. Opt. 20(11), 115001 (2018). https://doi.org/10.1088/2040-8986/aae119
Dash, J.N., Jha, R.: SPR biosensor based on polymer PCF coated with conducting metal oxide. IEEE Photonics Technol. Lett. 26(6), 595–598 (2014). https://doi.org/10.1109/LPT.2014.2301153
Dash, J.N., Jha, R.: Graphene-based birefringent photonic crystal fiber sensor using surface plasmon resonance. IEEE Photonics Technol. Lett. 26(11), 1092–1095 (2014). https://doi.org/10.1109/LPT.2014.2315233
Dash, J.N., Jha, R.: Highly Sensitive side-polished birefringent PCF-based SPR sensor in near IR. Plasmonics 11(6), 1505–1509 (2016). https://doi.org/10.1007/s11468-016-0203-8
Dash, J.N., Das, R., Jha, R.: AZO coated microchannel incorporated PCF-based SPR sensor: a numerical analysis. IEEE Photonics Technol. Lett. 30(11), 1032–1035 (2018). https://doi.org/10.1109/LPT.2018.2829920
Fu, G., Li, Y., Yang, J., Li, Q., Fu, X., Bi, W.: Temperature insensitive strain sensor with asymmetrical cascading structure based on photonic crystal fiber in chemical corrosion. J. Sensors 2017, 1489070 (2017). https://doi.org/10.1155/2017/1489070
Gao, D., Guan, C., Wen, Y., Zhong, X., Yuan, L.: Multi-hole fiber based surface plasmon resonance sensor operated at near-infrared wavelengths. Opt. Commun. 313, 94–98 (2014). https://doi.org/10.1016/j.optcom.2013.10.015
Gao, S., Baker, C., Chen, L., Bao, X.: High-sensitivity temperature and strain measurement in dual-core hybrid tapers. IEEE Photonics Technol. Lett. 30(12), 1155–1158 (2018). https://doi.org/10.1109/LPT.2018.2837662
Han, B., et al.: Simultaneous measurement of temperature and strain based on dual SPR effect in PCF. Opt. Laser Technol. 113, 46–51 (2019). https://doi.org/10.1016/j.optlastec.2018.12.010
Haque, E., Hossain, M.A., Ahmed, F., Namihira, Y.: Surface plasmon resonance sensor based on modified D-shaped photonic crystal fiber for wider range of refractive index detection. IEEE Sens. J. 18(20), 8287–8293 (2018). https://doi.org/10.1109/JSEN.2018.2865514
Haque, E., Anwar Hossain, M., Namihira, Y., Ahmed, F.: Microchannel-based plasmonic refractive index sensor for low refractive index detection. Appl Opt 58(6), 1547 (2019). https://doi.org/10.1364/AO.58.001547
Hasan, M.R., et al.: Spiral photonic crystal fiber-based dual-polarized surface plasmon resonance biosensor. IEEE Sens. J. 18(1), 133–140 (2018). https://doi.org/10.1109/JSEN.2017.2769720
Huang, H., et al.: A highly magnetic field sensitive photonic crystal fiber based on surface plasmon resonance. Sensors (switzerland) 20(18), 1–15 (2020). https://doi.org/10.3390/s20185193
Iadicicco, A., Cusano, A., Campopiano, S., Cutolo, A., Giordano, M.: Thinned fiber Bragg gratings as refractive index sensors. IEEE Sens. J. 5(6), 1288–1294 (2005). https://doi.org/10.1109/JSEN.2005.859288
Islam, M.S., Sultana, J., Rifat, A.A., Dinovitser, A., Wai-Him Ng, B., Abbott, D.: Terahertz sensing in a hollow core photonic crystal fiber. IEEE Sens. J. 18(10), 4073–4080 (2018). https://doi.org/10.1109/JSEN.2018.2819165
Islam, M.S., et al.: Dual-polarized highly sensitive plasmonic sensor in the visible to near-IR spectrum. Opt. Express 26(23), 30347 (2018). https://doi.org/10.1364/oe.26.030347
Islam, M.S., et al.: A novel approach for spectroscopic chemical identification using photonic crystal fiber in the terahertz regime. IEEE Sens. J. 18(2), 575–582 (2018). https://doi.org/10.1109/JSEN.2017.2775642
Islam, M.S., et al.: A Hi-Bi ultra-sensitive surface plasmon resonance fiber sensor. IEEE Access 7, 79085–79094 (2019). https://doi.org/10.1109/ACCESS.2019.2922663
Islam, M.S., Islam, M.R., Sultana, J., Dinovitser, A., Ng, B.W.-H., Abbott, D.: Exposed-core localized surface plasmon resonance biosensor. J. Opt. Soc. Am. B 36(8), 2306 (2019). https://doi.org/10.1364/josab.36.002306
Islam, M.S., et al.: Localized surface plasmon resonance biosensor: an improved technique for SERS response intensification. Opt. Lett. 44(5), 1134 (2019). https://doi.org/10.1364/ol.44.001134
Islam, M.R., Kabir, M.F., Talha, K.M.A., Islam, M.S.: a novel hollow core terahertz refractometric sensor. Sens. Bio-Sensing Res. 25, 100295 (2019). https://doi.org/10.1016/j.sbsr.2019.100295
Islam, M.R., et al.: Design and analysis of birefringent SPR based PCF biosensor with ultra-high sensitivity and low loss. Optik (stuttg) (2020). https://doi.org/10.1016/j.ijleo.2020.165311
Islam, M.R., Kabir, M.F., Talha, K.M.A., Arefin, M.S.: Highly birefringent honeycomb cladding terahertz fiber for polarization-maintaining applications. Opt. Eng. 59(01), 1 (2020). https://doi.org/10.1117/1.oe.59.1.016113
Islam, M.R., Iftekher, A.N.M., Mou, F.A., Rahman, M.M., Bhuiyan, M.I.H.: Design of a Topas-based ultrahigh-sensitive PCF biosensor for blood component detection. Appl. Phys. A (2021). https://doi.org/10.1007/s00339-020-04261-3
Islam, M.R., et al.: Highly birefringent gold-coated SPR sensor with extremely enhanced amplitude and wavelength sensitivity. Eur. Phys. J. plus 136(2), 238 (2021). https://doi.org/10.1140/epjp/s13360-021-01220-6
Islam, M.R., et al.: Design and analysis of a QC-SPR-PCF sensor for multipurpose sensing with supremely high FOM. Appl. Nanosci. (2021). https://doi.org/10.1007/s13204-021-02150-6
Islam, M.R., et al.: Design and numerical analysis of a gold-coated photonic crystal fiber based refractive index sensor. Opt. Quantum Electron. (2021). https://doi.org/10.1007/s11082-021-02748-8
Islam, M.R., et al.: Design and analysis of a biochemical sensor based on surface plasmon resonance with ultra-high sensitivity. Plasmonics (2021). https://doi.org/10.1007/s11468-020-01355-9
Islam, M.R., et al.: Design of a dual cluster and dual array-based PCF-SPR biosensor with ultra-high WS and FOM. Plasmonics (2022a). https://doi.org/10.1007/s11468-022-01612-z
Islam, M.R., et al.: Trigonal cluster-based ultra-sensitive surface plasmon resonance sensor for multipurpose sensing. Sens. Bio-Sens. Res. 35, 100477 (2022b). https://doi.org/10.1016/j.sbsr.2022.100477
Ju, J., Jin, W.: Photonic crystal fiber sensors for strain and temperature measurement. J. Sensors 2009, 476267 (2009). https://doi.org/10.1155/2009/476267
Kou, J., Qiu, S., Xu, F., Lu, Y.: Demonstration of a compact temperature sensor based on first-order Bragg grating in a tapered fiber probe. Opt. Express 19(19), 18452 (2011). https://doi.org/10.1364/OE.19.018452
Li, J., Pei, L., Wang, J., Wu, L., Ning, T., Zheng, J.: Temperature and magnetic field sensor based on photonic crystal fiber and surface plasmon resonance. Zhongguo Jiguang/chinese J. Lasers (2019). https://doi.org/10.3788/CJL201946.0210002
Liu, Q., Li, S., Chen, H., Li, J., Fan, Z.: High-sensitivity plasmonic temperature sensor based on photonic crystal fiber coated with nanoscale gold film. Appl. Phys. Express 8(4), 046701 (2015). https://doi.org/10.7567/APEX.8.046701
Liu, Z.J., et al.: An optical microfiber taper magnetic field sensor with temperature compensation. IEEE Sens. J. 15(9), 4853–4856 (2015). https://doi.org/10.1109/JSEN.2015.2429911
Liu, C., et al.: Symmetrical dual D-shape photonic crystal fibers for surface plasmon resonance sensing. Opt. Express 26(7), 9039 (2018). https://doi.org/10.1364/OE.26.009039
Liu, W., et al.: A hollow dual-core PCF-SPR sensor with gold layers on the inner and outer surfaces of the thin cladding. Results Opt. (2020). https://doi.org/10.1016/j.rio.2020.100004
Miao, Y., et al.: Magnetic field tunability of optical microfiber taper integrated with ferrofluid. Opt. Express 21(24), 29914 (2013). https://doi.org/10.1364/oe.21.029914
Mollah, M.A., Islam, S.M.R., Yousufali, M., Abdulrazak, L.F., Hossain, M.B., Amiri, I.S.: Plasmonic temperature sensor using D-shaped photonic crystal fiber. Results Phys. 16, 102966 (2020). https://doi.org/10.1016/j.rinp.2020.102966
Mou, F.A., Rahman, M.M., Islam, M.R., Bhuiyan, M.I.H.: Development of a photonic crystal fiber for THz wave guidance and environmental pollutants detection. Sens. Bio-Sensing Res. 29, 100346 (2020). https://doi.org/10.1016/j.sbsr.2020.100346
Osório, J.H., et al.: Bragg gratings in surface-core fibers: refractive index and directional curvature sensing. Opt. Fiber Technol. 34, 86–90 (2017). https://doi.org/10.1016/j.yofte.2017.01.007
Patrick, H.J., Kersey, A.D., Bucholtz, F.: Analysis of the response of long period fiber gratings to external index of refraction. J. Light. Technol. 16(9), 1606–1612 (1998). https://doi.org/10.1109/50.712243
Rahman, Z., Hassan, W., Rahman, T., Sakib, N., Mahmud, S.: Highly sensitive tetra-slotted gold-coated spiral plasmonic biosensor with a large detection range. OSA Contin. 3(12), 3445 (2020). https://doi.org/10.1364/osac.411294
Rahman, M.M., Mou, F.A., Bhuiyan, M.I.H., Islam, M.R.: Photonic crystal fiber based terahertz sensor for cholesterol detection in human blood and liquid foodstuffs. Sens. Bio-Sensing Res. 29, 100356 (2020). https://doi.org/10.1016/j.sbsr.2020.100356
Rakibul Islam, M., Khan, M.M.I., Mehjabin, F., Alam Chowdhury, J., Islam, M.: Design of a fabrication friendly & highly sensitive surface plasmon resonance-based photonic crystal fiber biosensor”. Results Phys. 19, 103501 (2020). https://doi.org/10.1016/j.rinp.2020.103501
Rifat, A.A., Mahdiraji, G.A., Sua, Y.M., Ahmed, R., Shee, Y.G., Adikan, F.R.M.: Highly sensitive multi-core flat fiber surface plasmon resonance refractive index sensor. Opt. Express 24(3), 2485 (2016). https://doi.org/10.1364/OE.24.002485
Rifat, A.A., et al.: Photonic crystal fiber based plasmonic sensors. Sensors Actuators B Chem. 243, 311–325 (2017). https://doi.org/10.1016/j.snb.2016.11.113
Rifat, A.A., Haider, F., Ahmed, R., Mahdiraji, G.A., Mahamd Adikan, F.R., Miroshnichenko, A.E.: Highly sensitive selectively coated photonic crystal fiber-based plasmonic sensor”. Opt. Lett. 43(4), 891 (2018). https://doi.org/10.1364/OL.43.000891
Rindorf, L., Jensen, J.B., Dufva, M., Pedersen, L.H., Høiby, P.E., Bang, O.: Photonic crystal fiber long-period gratings for biochemical sensing. Opt. Express 14(18), 8224 (2006). https://doi.org/10.1364/OE.14.008224
Sakib, M.N., et al.: High performance dual core D-shape PCF-SPR sensor modeling employing gold coat. Results Phys. 15, 102788 (2019). https://doi.org/10.1016/j.rinp.2019.102788
Sakib, M.N., et al.: Numerical study of circularly slotted highly sensitive plasmonic biosensor: a novel approach. Results Phys. (2020). https://doi.org/10.1016/j.rinp.2020.103130
Singh, S., Prajapati, Y.K.: TiO2/gold-graphene hybrid solid core SPR based PCF RI sensor for sensitivity enhancement. Optik (stuttg) (2020). https://doi.org/10.1016/j.ijleo.2020.165525
Tien, C.L., Lin, H.Y., Su, S.H.: High sensitivity refractive index sensor by D-shaped fibers and titanium dioxide nanofilm. Adv. Condens. Matter Phys. 2018, 2303740 (2018). https://doi.org/10.1155/2018/2303740
Wang, G., et al.: Highly sensitive D-shaped photonic crystal fiber biological sensors based on surface plasmon resonance. Opt. Quantum Electron. 48(1), 46 (2016). https://doi.org/10.1007/s11082-015-0346-4
Wang, H., Yan, X., Li, S., Zhang, X.: Tunable surface plasmon resonance polarization beam splitter based on dual-core photonic crystal fiber with magnetic fluid. Opt. Quantum Electron. 49(11), 1–10 (2017). https://doi.org/10.1007/s11082-017-1190-5
Wang, H., Rao, W., Luo, J., Fu, H.: A dual-channel surface plasmon resonance sensor based on dual-polarized photonic crystal fiber for ultra-wide range and high sensitivity of refractive index detection. IEEE Photonics J. 13(1), 1–11 (2021). https://doi.org/10.1109/JPHOT.2021.3054726
Weng, S., Pei, L., Wang, J., Ning, T., Li, J.: High sensitivity D-shaped hole fiber temperature sensor based on surface plasmon resonance with liquid filling. Photonics Res. 5(2), 103 (2017). https://doi.org/10.1364/PRJ.5.000103
Yang, H., et al.: Highly sensitive graphene-au coated plasmon resonance PCF sensor. Sensors (switzerland) 21(3), 1–14 (2021). https://doi.org/10.3390/s21030818
Ying, Y., Wang, J.K., Xu, K., Si, G.Y.: High sensitivity D-shaped optical fiber strain sensor based on surface plasmon resonance. Opt. Commun. 460, 125147 (2020). https://doi.org/10.1016/j.optcom.2019.125147
Q. Zhang, “Magnetic Field Shielding: Fundamentals, Properties, and Applications,” 2018, pp. 109–146.
Zhao, Y., Liu, X., Lv, R., Zhang, Y., Wang, Q.: Review on optical fiber sensors based on the refractive index tunability of ferrofluid. J. Light. Technol. 35(16), 3406–3412 (2017). https://doi.org/10.1109/JLT.2016.2573288
Zhao, T., Lou, S., Wang, X., Zhang, W., Wang, Y.: Simultaneous measurement of curvature, strain and temperature using a twin-core photonic crystal fiber-based sensor. Sensors 18(7), 2145 (2018). https://doi.org/10.3390/s18072145
Zhou, J., et al.: Intensity modulated refractive index sensor based on optical fiber Michelson interferometer. Sensors Actuators B Chem. 208, 315–319 (2015). https://doi.org/10.1016/j.snb.2014.11.014
Funding
The authors did not receive support from any organization for the submitted work.
Author information
Authors and Affiliations
Contributions
MRI worked as a supervisor and concept generator while MMIK, AM AN, FM and FZJ have designed and simulated while JAC, FA and MI prepared the draft paper, edited and finalized the paper.
Corresponding author
Ethics declarations
Conflict of interest
The authors declare no conflicts of interest.
Availability of data and material
Data sharing not applicable to this article as no datasets were generated or analyzed during the current study.
Code availability
Not Applicable.
Ethics approval
Comply with the ethical standards.
Consent to participate
Not Applicable.
Consent for publication
Not Applicable.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Islam, M.R., Khan, M.M.I., Al Naser, A.M. et al. Design of a quad channel SPR-based PCF sensor for analyte, strain, temperature, and magnetic field strength sensing. Opt Quant Electron 54, 563 (2022). https://doi.org/10.1007/s11082-022-03912-4
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s11082-022-03912-4