Skip to main content
Log in

Investigation of the fano lineshapes in plasmonic asymmetric silver nanosphere dimer

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

The plasmonic properties of an asymmetric dimer, comprising of two silver nanospheres with different radii, are studied by the finite difference time domain method. The extinction efficiencies of the plasmonic dimer are numerically calculated in the visible and near-infrared regime, i.e., from 950 to 150 THz. Two distinguishable Fano resonances are observed when the separation between the nanospheres is narrowed within a certain value, e.g., less than 10 nm. The extinction spectrum that presents two Fano resonances, associated with two electromagnetic modes, is well fitted using a model consisting of two Fano lineshape functions. The resonance frequencies, the spectral widths, and the characteristic q values are obtained via the best fit parameters, and their trends are revealed with varying the radii of the nanospheres. The fitting scheme proposed in this work may be useful in the study of other plasmonic nanostructures with multiple Fano resonances.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Babaei, F., Javidnasab, M., Rezaei, A.: Localized surface plasmons of supershape nanoparticle dimers. Plasmonics 14, 285–291 (2019)

    Article  Google Scholar 

  • Brown, S.D.M., Jorio, A., Corio, P., Dresselhaus, M.S., Saito, R., Kneipp, K.: Origin of the breit-wigner-fano lineshape of the tangential G-band feature of metallic carbon nanotubes. Phys. Rev. B 63, 155413 (2001)

    Article  ADS  Google Scholar 

  • Chang, Y., Jiang, Y., Sun, X.: Plasmonic coupling from silver nanoparticle dimer array mediating surface plasmon resonant enhancement on the thin silver film. Appl. Phys. B 113, 503–509 (2013)

    Article  ADS  Google Scholar 

  • Das, A., Ahmed, A., Hasan, M.M.: Observation of Fano resonance in silver nanocube-nanosphere dimer. Pramana 94, 128 (2020)

    Article  ADS  Google Scholar 

  • Fano, U.: Effects of configuration interaction on intensities and phase shifts. Phys. Rev. 124, 1866–1878 (1961)

    Article  ADS  Google Scholar 

  • Genet, C., van Exter, M.P., Woerdman, J.P.: Fano-type interpretation of red shifts and red tails in hole array transmission spectra. Opt. Commun. 255, 331–336 (2003)

    Article  ADS  Google Scholar 

  • Jiang, B.Z., Sun, C.: On the plasmonic properties of a symmetry-breaking silver nanoring structure. Phys. E 101, 62–70 (2018)

    Article  Google Scholar 

  • Joe, Y.S., Satanin, A.M., Klimeck, G.: Interactions of Fano resonances in the transmission of an Aharonov-Bohm ring with two embedded quantum dots in the presence of a magnetic field. Phys. Rev. B 72, 115310 (2005)

    Article  ADS  Google Scholar 

  • Johnson, A.C., Marcus, C.M., Hanson, M.P., Gossard, A.C.: Coulomb-modified fano resonance in a one-lead quantum dot. Phys. Rev. Lett. 93, 106803 (2004)

    Article  ADS  Google Scholar 

  • Khan, A.D., Khan, S.D., Khan, R.U., Ahmad, N., Ali, A., Khalil, A., Khan, F.A.: Generation of multiple fano resonances in plasmonic split nanoring dimer. Plasmonics 9, 1091–1102 (2014)

    Article  Google Scholar 

  • Kobayashi, K., Aikawa, H., Sano, A., Katsumoto, S., Iye, Y.: Fano rresonance in a quantum wire with a side-coupled quantum dot. Phys. Rev. B 70, 035319 (2004)

    Article  ADS  Google Scholar 

  • Kumar, A., Solanki, A., Manjappa, M., Ramesh, S., Srivastava, Y.K., Agarwal, P., Sum, T.C., Singh, R.: Excitons in 2D perovskites for ultrafast terahertz photonic devices. Sci. Adv. 6, eaax8821 (2020)

    Article  ADS  Google Scholar 

  • Li, W.: Physics models of plasmonics: single nanoparticle, complex single nanoparticle, nanodimer, and single nanoparticle over metallic thin film. Plasmonics 13, 997–1014 (2018)

    Article  Google Scholar 

  • Luk’yanchuk, B., Zheludev, N.I., Maier, S.A., Halas, N.J., Nordlander, P., Giessen, H., Chong, C.T.: The fano resonance in plasmonic nanostructures and metamaterials. Nat. Mater. 9, 707–715 (2010)

    Article  ADS  Google Scholar 

  • McMahon, J.M., Henry, A.I., Wustholz, K.L., Natan, M.J., Freeman, R.G., Duyne, R.P.V., Schatz, G.C.: Gold nanoparticle dimer plasmonics: finite element method calculations of the electromagnetic enhancement to surface-enhanced raman spectroscopy. Anal. Bioanal. Chem. 394, 1819–1825 (2009)

    Article  Google Scholar 

  • Mies, F.H.: Configuration interaction theory effects of overlapping resonances. Phys. Rev. 175, 164 (1968)

    Article  ADS  Google Scholar 

  • Miroshnichenko, A.E., Flach, S., Kivshar, Y.S.: Fano resonances in nanoscale structures. Rev. Mod. Phys. 82, 2257–2298 (2010)

    Article  ADS  Google Scholar 

  • Palik, E.D.: Handbook of optical constants of solids, vol. 3. Academic press, Cambridge (1998)

    Google Scholar 

  • Singh, R., Al-Naib, I., Chowdhury, D.R., Cong, L., Rockstuhl, C., Zhang, W.: Probing the transition from an uncoupled to a strong near-field coupled regime between bright and dark mode resonators in metasurfaces. Appl. Phys. Lett. 105, 081108 (2014)

    Article  ADS  Google Scholar 

  • FDTD Solutions, www.lumerical.com

  • Srivastava, Y.K., Ako, R.T., Gupta, M., Bhaskaran, M., Sriram, S., Singh, R.: Terahertz sensing of 7nm dielectric film with bound states in the continuum metasurfaces. Appl. Phys. Lett. 115, 151105 (2019)

    Article  ADS  Google Scholar 

  • Sun, C.: On the plasmonic properties of Ag\(@\)SiO2\(@\)graphene core-shell. Plasmonics 13, 1671–1680 (2018)

    Article  Google Scholar 

  • Sun, G., Khurgin, J.B., Bratkovsky, A.: Coupled-mode theory of field enhancement in complex metal nanostructures. Phys. Rev. B 84, 045415 (2011)

    Article  ADS  Google Scholar 

  • Tan, T.C.W., Plum, E., Singh, R.: Lattice-enhanced fano resonances from bound states in the continuum metasurfaces. Adv. Opt. Mater. 8, 1901572 (2020)

    Article  Google Scholar 

  • Theiss, J., Aykol, M., Pavaskar, P., Cronin, S.B.: Plasmonic mode mixing in nanoparticle dimers with nm-separations via substrate-mediated coupling. Nano Res. 7(9), 1344–1354 (2014)

    Article  Google Scholar 

  • Toroghi, S., Kik, P.G.: Cascaded plasmon resonant field enhancement in nanoparticle dimers in the point dipole limit. Appl. Phys. Lett. 100, 183105 (2012)

    Article  ADS  Google Scholar 

  • Wang, Q., Pan, S., Guo, Y., Li, R., Liu, K.: Plasmonic effect of a nanoshell dimer with different gain materials materials. Plasmonics 9, 1463–1469 (2014)

    Article  Google Scholar 

Download references

Acknowledgements

C.Sun acknowledges support by Grant Number LJKQZ2021171 from the Basic Research Programme of Liaoning Province of China. D.D. Dong acknowledges support by Grant Number 51801017 from the National Natural Science Foundation of China.

Funding

C.Sun acknowledges support by Grant Number LJKQZ2021171 from the Basic Research Programme of Liaoning Province of China. D.D. Dong acknowledges support by Grant Number 51801017 from the National Natural Science Foundation of China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cheng Sun.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gu, J., Dong, D., Xiong, T. et al. Investigation of the fano lineshapes in plasmonic asymmetric silver nanosphere dimer. Opt Quant Electron 54, 447 (2022). https://doi.org/10.1007/s11082-022-03872-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-022-03872-9

Keywords

Navigation