Skip to main content
Log in

Impact of effective capture cross-section on device performance of InAs/GaAs quantum dot solar cell

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

We have theoretically modeled the impact of effective carrier capture cross-sections on the intermediate band generation recombination process of InAs/GaAs quantum dot solar cell (QDSC). The device characteristics are obtained from Poisson’s and continuity equations. The quantum dot (QD) occupation probability was utilized to estimate the effective capture cross-sections under different conditions. We observed that when the QDs become trap centers, the effective electron capture cross-section controls the QD recombination. Moreover, the QD recombination dominates the overall recombination process near the maximum power point (MPP) of the device. Hence, the electron capture cross-section plays a vital role in determining the performance of the QDSC. The results for n-type \(\delta \)-doped QDSCs also reported similar behavior. However, the analysis carried out for different Shockley-Read-Hall (SRH) recombination lifetimes indicated that with a decrease in SRH recombination lifetime representing the degraded barrier materials, SRH recombination becomes dominant. Hence the electron effective capture cross-section has a substantial impact on the device performance of the QDSCs for which the SRH recombination does not dominate over the intermediate band recombination at the MPP of the device.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Atre, A.C., Dionne, J.A.: Realistic upconverter-enhanced solar cells with non-ideal absorption and recombination efficiencies. J. Appl. Phys. 110(3), 034505 (2011)

    Article  ADS  Google Scholar 

  • Bailey, C.G., et al.: Open-circuit voltage improvement of InAs/GaAs quantum-dot solar cells using reduced InAs coverage. IEEE J. Photovolt. 2(3), 269–275 (2012)

    Article  Google Scholar 

  • Bailey, C.G., Forbes, D.V., Raffaelle, R.P., Hubbard, S.M.: Near 1 V open circuit voltage InAs/GaAs quantum dot solar cells. Appl. Phys. Lett. 98(16), 163105 (2011)

    Article  ADS  Google Scholar 

  • Beattie, N.S., et al.: Quantum engineering of InAs/GaAs quantum dot based intermediate band solar cells. ACS Photonics 4(11), 2745–2750 (2017)

    Article  Google Scholar 

  • Bertazzi, F., Cappelluti, F., Guerrieri, S.D., Bonani, F., Ghione, G.: Self-consistent coupled carrier transport full-wave EM analysis of semiconductor traveling-wave devices. IEEE Trans. Microw. Theory Tech. 54(4), 1611–1618 (2006)

    Article  ADS  Google Scholar 

  • Cappelluti, F., Gioannini, M., Khalili, A.: Impact of doping on InAs/GaAs quantum-dot solar cells: A numerical study on photovoltaic and photoluminescence behavior. Sol. Energy Mater. Sol. Cells 157, 209–220 (2016)

    Article  Google Scholar 

  • Chowdhury, I.U.I., Sarker, J., Shifat, A.Z., Shuvro, R.A., Mitul, A.F.: Performance analysis of high efficiency InxGa1-xN/GaN intermediate band quantum dot solar cells. Results Phys. 9, 432–439 (2018)

    Article  ADS  Google Scholar 

  • Driscoll, K., Bennett, M.F., Polly, S.J., Forbes, D.V., Hubbard, S.M.: Effect of quantum dot position and background doping on the performance of quantum dot enhanced GaAs solar cells. Appl. Phys. Lett. 104(2), 023119 (2014)

    Article  ADS  Google Scholar 

  • Gu, Y.-X., Yang, X.-G., Ji, H.-M., Xu, P.-F., Yang, T.: Theoretical study of the effects of InAs/GaAs quantum dot layer’s position in i-region on current-voltage characteristic in intermediate band solar cells. Appl. Phys. Lett. 101(8), 081118 (2012)

    Article  ADS  Google Scholar 

  • Hubbard, S., et al.: Effect of strain compensation on quantum dot enhanced GaAs solar cells. Appl. Phys. Lett. 92(12), 123512 (2008)

    Article  ADS  Google Scholar 

  • Luque, A., Martí, A.: Increasing the efficiency of ideal solar cells by photon induced transitions at intermediate levels. Phys. Rev. Lett. 78(26), 5014 (1997)

    Article  ADS  Google Scholar 

  • Luque, A., et al.: Operation of the intermediate band solar cell under nonideal space charge region conditions and half filling ofthe intermediate band. J. Appl. Phys. 99(9), 94503 (2006)

    Article  Google Scholar 

  • Martí, A., et al.: Novel semiconductor solar cell structures: The quantum dot intermediate band solar cell. Thin Solid Films 511, 638–644 (2006)

    Article  ADS  Google Scholar 

  • Mellor, A., Luque, A., Tobías, I., Martí, A.: The feasibility of high-efficiency InAs/GaAs quantum dot intermediate band solar cells. Sol. Energy Mater. Sol. Cells 130, 225–233 (2014)

    Article  Google Scholar 

  • Okada, Y., Oshima, R., Takata, A.: Characteristics of InAs/GaNAs strain-compensated quantum dot solar cell. J. Appl. Phys. 106(2), 024306 (2009)

    Article  ADS  Google Scholar 

  • Polly, S.J., Forbes, D.V., Driscoll, K., Hellström, S., Hubbard, S.M.: Delta-doping effects on quantum-dot solar cells. IEEE J. Photovolt. 4(4), 1079–1085 (2014)

    Article  Google Scholar 

  • Pusch, A., Ekins-Daukes, N.J.: Voltage matching, étendue, and ratchet steps in advanced-concept solar cells. Phys. Rev. Appl. 12(4), 044055 (2019)

    Article  ADS  Google Scholar 

  • Ramiro, I., et al.: Analysis of the intermediate-band absorption properties of type-II GaSb/GaAs quantum-dot photovoltaics. Phys. Rev. B 96, 125422 (2017)

    Article  ADS  Google Scholar 

  • Sablon, K.A., Sergeev, A., Vagidov, N., Little, J.W., Mitin, V.: Effects of quantum dot charging on photoelectron processes and solar cell characteristics. Sol. Energy Mater. Sol. Cells 117, 638–644 (2013)

    Article  Google Scholar 

  • Scharfetter, D.L., Gummel, H.K.: Large-signal analysis of a silicon read diode oscillator. IEEE Trans. Electron. Devices 16(1), 64–77 (1969)

    Article  ADS  Google Scholar 

  • Sharan, A., Kumar, J.: Effect of position-dependent doping on intermediate band generation-recombination rate in InAs/GaAs quantum dot solar cell. IEEE Trans. Nanotechnol. 21, 151–157 (2022)

    Article  ADS  Google Scholar 

  • Trupke, T., Green, M., Würfel, P.: Improving solar cell efficiencies by up-conversion of sub-band-gap light. J. Appl. Phys. 92(7), 4117–4122 (2002)

    Article  ADS  Google Scholar 

  • Wagener, M.C., et al.: Hole capture and emission dynamics of type-ii GaSb/GaAs quantum ring solar cells. Sol. Energy Mater. Sol. Cells 189, 233–238 (2019)

    Article  Google Scholar 

  • Yang, X., et al.: Improved efficiency of InAs/GaAs quantum dots solar cells by Si-doping. Sol. Energy Mater. Sol. Cells 113, 144–147 (2013)

    Article  Google Scholar 

Download references

Funding

Not Applicable

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahna Sharan.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Numerical Simulation of Optoelectronic Devices.

Guest edited by Slawek Sujecki, Asghar Asgari, Donati Silvano, Karin Hinzer, Weida Hu, Piotr Martyniuk, Alex Walker and Pengyan Wen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharan, A., Kumar, J. Impact of effective capture cross-section on device performance of InAs/GaAs quantum dot solar cell. Opt Quant Electron 54, 543 (2022). https://doi.org/10.1007/s11082-022-03855-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-022-03855-w

Keywords

Navigation