Skip to main content
Log in

L-band PON (NG-PON2) fault detection/monitoring and PWR using C-band ASEN and FBGs

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

With the propelling high capacity demands, long band (L-Band) passive optical networks (PONs) are getting extra consideration nowadays and fault detection/Monitoring is becoming crucial because of high capacity PONs. Fault detection using reflective Fiber Bragg gratings and an additional amplified spontaneous noise (ASEN) source in conventional band (C-Band) are widely reported. However, ASEN and transmitter signals in the same wavelength band cause interference and incorporation of additional ASEN sources increases overall cost. Therefore, an economical, complexity reduced fault detection system is required in PONs. In this work, a fault detection/monitoring system is proposed for L-Band PON using C-Band ASEN from inline erbium doped fiber amplifier and dual purpose FBG i.e. (1) ASEN reflection for fault monitoring and (2) Pulse width reduction. A 4 × 10 Gbps L-Band PON is investigated over 40 km feeder fiber (FF) which serve 32 optical network units (ONUs)/λ at different input powers, PWB, laser linewidths, chirping profiles of FBG in terms of reflective power of FBGs, eye opening factor, correct bit reception rate and pulse width reduction efficiency (PWRE) respectively. Reflective power from FBG and correct bit reception rate, decrease with the increase in input power and laser linewidth respectively. Moreover, FBG after FF provide PWRE of 60%, 75.8%, 73.06%, 72.41% and 65.5% in case of no chirping, liner, quadratic, square root and cube root respectively. Proposed system can detect fault without affecting data rate in optical distribution network and ONU, also compensate PWB effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Auguste, J.L., et al.: 1800 ps/(nm km) chromatic dispersion at 1.55 μm in dual concentric core fibre. Electron. Lett. 36, 1689–1691 (2000)

    Article  ADS  Google Scholar 

  • Amaral, G.C., et al.: WDM-PON monitoring with tunable photon counting OTDR. IEEE Photon. Technol. Lett. 2, 1279–1282 (2014)

    Article  Google Scholar 

  • Ashraf, M.: Simulative design of DWDM system using different dispersion compensation techniques. Int. J. Sci. Eng. Res. 8, 446–463 (2017)

    Google Scholar 

  • Almukhtar, A.A., et al.: Enhanced triple-pass hybrid erbium doped fiber amplifier using distribution pumping scheme in a dual-stage configuration. Optik 204, 164191 (2020)

    Article  ADS  Google Scholar 

  • Becker, P.C., Olsson, N.A., Simpson, J.R.: Erbium Doped Fiber Amplifiers: Fundamentals and Technology. Academic Press, Cambridge (1999)

    Google Scholar 

  • Bakar, A.A.A., et al.: A new technique of real-time monitoring of fiber optic cable networks transmission. Opt. Lasers Eng. 45, 126–130 (2007)

    Article  Google Scholar 

  • Beshr, A.H.: Study of ASE noise power, noise figure and quantum conversion efficiency for wide-band EDFA. Optik 126, 3492–3495 (2015)

    Article  ADS  Google Scholar 

  • Caballero, D.V., Herrera, L.E.Y., Weid, J.P.V., Urban, P.J.: Low-cost embedded OTDR monitoring for direct modulation analog radio over fiber. SBMO/IEEE MTT-S International Microwave and Optoelectronics Conference (IMOC), IEEE, Aguas de Lindoia, Brazil, (2017).

  • Durak, F.E., Altuncu, A.: The effect of ASE reinjection configuration through FBGs on the gain and noise figure performance of L-Band EDFA. Opt. Commun. 386, 31–36 (2017)

    Article  ADS  Google Scholar 

  • Fouli, K., Chen, R., Maier, M.: Optical reflection monitoring for next-generation long-reach passive optical networks. In: Proceedings of LEOS Annual Meeting Conference, Belek-Antalya, 551–552 (2009a).

  • Fouli, K., Maier, M., Mouftah, H.: Optical code reflection monitoring for improved resilience in next-generation carrier-grade ethernet access-metro networks. In: Proceedings of Photonics North Conference (2009b).

  • Feng, Z., et al.: Coherent OTDR used for fibre faults detection. In: 2009 Asia Communications and Photonics conference and Exhibition (ACP). Vol. 2009. IEEE, (2009)

  • Fouli, K., Chen, R., Maier, M.: Time-, wavelength-, and code-domain optical reflection monitoring for next-generation access-metro networks. Comput. Commun. 34, 1011–1021 (2011)

    Article  Google Scholar 

  • Hu, Z., et al.: Improving spatial resolution of chaos OTDR using significant-bit correlation detection. IEEE Photon. Technol. Lett. 31, 1029–1032 (2019)

    Article  ADS  Google Scholar 

  • Horvath, T., Munster, P., Bao, N.: Lasers in passive optical networks and the activation process of an end unit: a tutorial. Electronics 9, 1114 (2020)

    Article  Google Scholar 

  • Horvath, T., Munster, P., Oujezsky, V., Bao, N.: Passive optical networks progress: a tutorial. Electronics 9, 1–32 (2020)

    Google Scholar 

  • Joshi, V., Mehra, R.: Performance analysis of an optical system using dispersion compensation fiber & linearly chirped apodized fiber bragg grating. Open Phys. J. 3, 114–121 (2016)

    Article  ADS  Google Scholar 

  • Kaur, S., Kumar, M., Verma, A.: An integrated high-speed full duplex coherent OFDM-PON and visible-light communication system. J. Opt. Commun. AOP (2019a). https://doi.org/10.1515/joc-2018-0236

    Article  Google Scholar 

  • Kaur, S., Kumar, M., Verma, A.: A novel hybrid passive optical network, free space optical and visible light communication system. JETIR 6, 258–261 (2019b)

    Google Scholar 

  • Kumar, S., Rathee, S., Arora, P.: Evaluation of chirped fiber bragg grating with APD on designed optical fiber communication link. J. Opt. Comm. AOP (2019). https://doi.org/10.1515/joc-2019-0120

    Article  Google Scholar 

  • Kumari, M., Sharma, R., Sheetal, A.: Performance analysis of high speed backward compatible TWDM-PON with hybrid WDM–OCDMA PON using different OCDMA codes. Opt. Quant. Electron. (2020). https://doi.org/10.1007/s11082-020-02597-x

    Article  Google Scholar 

  • Litchinitser, N.M., Eggleton, B.J., Patterson, D.B.: Fiber Bragg gratings for dispersion compensation in transmission: theoretical model and design criteria for nearly ideal pulse recompression. J. Lightw. Technol. 15, 1303–1313 (1997)

    Article  ADS  Google Scholar 

  • Minardo, A., Bernini, R., Amato, L., Zeni, L.: Bridge monitoring using brillouin fiber-optic sensors. IEEE Sens. J. 12, 145–150 (2011)

    Article  ADS  Google Scholar 

  • Mandal, P., et al. Mitigation of Rayleigh backscattering in RoF-WDM-PON employing self coherent detection and bi-directional cross wavelength technique. Opt. Quantum Electron. 53(2), 1–13 (2021)

  • Nielsen, L.G., et al.: Dispersion compensating fibers. Opt. Fiber Technol. 6, 164–180 (2000)

    Article  ADS  Google Scholar 

  • Naim, N.F., Ab-Rahman, M.S., Kamaruddin, N., Bakar, A.A.A.: Real-time monitoring and fault locating using amplified spontaneous emission noise reflection for tree-structured Ethernet passive optical networks. Opt. Eng. 52(9), 096112 (2013)

    Article  ADS  Google Scholar 

  • Naim, N., Bakar, M.: Passive optical access network monitoring using LBand ASE source with Fiber Bragg grating. IEEE Student Conference on Research and Development (SCOReD), Putrajaya, Malaysia (2013b).

  • Naim, F., Bakar, A.A.A., Rahman, M.S., Ab,: Fault identification and localization for ethernet passive optical network using L-band ASE source and various types of fiber Bragg grating. Opt. Fiber Technol 40, 159–164 (2017)

    Article  ADS  Google Scholar 

  • Pande, K., Pal, B.P.: Design optimization of a dualcore dispersion-compensating fiber with a high figure of merit and a large effective area for dense wavelength-division multiplexed transmission through standard G.655 fibers. Appl. Opt. 42, 3785–3791 (2003)

    Article  ADS  Google Scholar 

  • Park, J., Baik, J., Lee, C.: Fault-detection technique in a WDM-PON. Opt. Express 15, 1461–1466 (2007)

    Article  ADS  Google Scholar 

  • Rebola, J.L., Cartazo, A.V.T.: Performance optimization of Gaussian apodized fiber Bragg grating filters in WDM systems. J. Lightw. Technol. 20, 1537–1544 (2002)

    Article  ADS  Google Scholar 

  • Schmuck, H., Hehmann, J., Straub, M., Pfeiffer, T.: Embedded OTDR techniques for cost-efficient fiber monitoring in optical access networks. In: European Conference on Optical Communications, IEEE, Cannes, France (2006).

  • Song, H., Seol, D., Kim, B.: Hardware-accelerated protection in long-reach PON. In: Proceedings of Optical Fiber Communication (OFC), San Diego, CA (2009)

  • Seol, D., Jung, E., Kim, B.: A simple passive protection structure in a ring-type hybrid WDM/TDM-PON. In: Proceedings of the 11thInternational Conference on Advanced Communication Technology, Phoenix Park, 447–449 (2009).

  • Singh, N., Kumar, M., Verma, A.: Automatic gain-controlled HOA with residual pumping. J. Opt. Commun.s (2017). https://doi.org/10.1515/joc-2017-0185

    Article  Google Scholar 

  • Sharma, A., Singh, I., Bhattacharya, S.: Performance analysis of dispersion compensation using ideal Fiber Bragg grating in a 100 Gb/S single channel optical system. Int. J. Eng. Sci. Res. Technol. 7, 513–523 (2018)

    Google Scholar 

  • Sharma, D., Sharma, S.: Performance enhancement of backward compatible NGPON2/GPON systems. Master of Engineering, Thapar Institute of Eng. and Tech., (2018). http://tudr.thapar.edu:8080/jspui/bitstream/10266/5260/1/Report.pdf.

  • Sahota, J.K., Gupta, N., Dhawan, D.: Fiber Bragg grating sensors for monitoring of physical parameters: a comprehensive review. Opt. Eng. 59, 060901 (2020). https://doi.org/10.1117/1.OE.59.6.060901

    Article  ADS  Google Scholar 

  • Shao, Y., Long, Y., et al.: Research on optical 32QAM-OFDM-PON access scheme with different numbers of sub-carriers using DMT modulation. J. Eur. Opt. Soc.-Rapid Publ. 16, 1–5 (2020)

    Article  Google Scholar 

  • Sachdeva, S., Malhotra, J., Kumar, M.: Performance of different hybrid dispersion compensation modules (DCMs) in long reach ultra dense WDM passive optical networks. J. Opt. Commun. AOP. (2021). https://doi.org/10.1515/joc-2020-0191

    Article  Google Scholar 

  • Traiyasuth, S., Roeksabutr, A.: Simulink Model for realtime optical access network monitoring using FBG combination. International Electrical Engineering Congress (iEECON), IEEE, Krabi, Thailand (2018).

  • Usman, A., Zulkifli, N., Salim, M.R., Khairi, K.: An enhanced G-PON fault monitoring technique using optical sensor. Sci. Proc. Ser. 1, 39–42 (2019)

    Article  Google Scholar 

  • Usman, A., Zulkifli, N., Salim, M.R., Khairi, K.: Optical link monitoring in fibre-to-the-X passive optical network (FTTx PON): a comprehensive survey. Opt. Switch. Netw. (2020a). https://doi.org/10.1016/j.osn.2020.100596

    Article  Google Scholar 

  • Usman, A., Zulkifli, N., Salim, M.R., Khairi, K.: Optical link fault detection and localization in passive optical network domain. J. Crit. Rev. 7, 735–743 (2020b)

    Google Scholar 

  • Wang, Y., Wang, B., Wang, A.: Chaotic correlation optical time domain reflectometer utilizing laser diode. IEEE Photon. Technol. Lett. 20, 1636–1638 (2008)

    Article  ADS  Google Scholar 

  • Yusuf, M., Bhandari, V.: Enhancement in the gain of EDFA in fibre optic communication. Int. J. Eng. Adv. Technol. (IJEAT) 9, 411–417 (2019)

    Article  Google Scholar 

  • Zhang, X., Guo, H., Jia, X., Liao, Q.: Self-match based on polling scheme for passive optical network monitoring. Opt. Commun. 417, 19–23 (2018)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the management and technical team of Punjab Technical University, Jalandhar for providing the state of the art laboratory facility to carry out the research work.

Funding

This is to declare that no funding has been provided by any internal/external agency for this research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shippu Sachdeva.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sachdeva, S., Malhotra, J. & Kumar, M. L-band PON (NG-PON2) fault detection/monitoring and PWR using C-band ASEN and FBGs. Opt Quant Electron 54, 453 (2022). https://doi.org/10.1007/s11082-022-03854-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-022-03854-x

Keywords

Navigation