Skip to main content

Advertisement

Log in

Impact of HTM on lead-free perovskite solar cell with high efficiency

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

The Scaps-1d simulator was used to simulate a lead-free perovskite CH3NH3SnI3 based solar cell devices fabricated from different hole transport materials (HTM). This research looks at two organic and two inorganic HTM layers. The cell structure used in this study is FTO/TiO2/CH3NH3SnI3/HTM (variable)/Au(variable). Spiro-OMeTAD, PEDOT:PSS, CuO and Cu2O are the HTM materials used. The results show that utilizing CuO as an HTM produces better outcomes than other HTMs, with an efficiency of 28.45%. The thickness, acceptor concentration (NA), and defect density (Nt) of the perovskite layer on optoelectronic properties of the solar cell are focus of simulation studies. According to this study, an perovskite layer thickness of 1000 nm is suitable for a decent photovoltaic cell. Furthermore, by adjusting the HTM thickness and the defect density of HTM and absorber layer, promising findings of Jsc of 34.38 mAcm−2, Voc of 1.011 V, FF of 80.85% and PCE of 28.10% were obtained for Spiro-OMeTAD based PSC. Finally, in order to improve the device's performance, an anode material with high work function is required. Our findings reveal that using a thin absorber layer results in low photo generated charge carriers due to less absorption, but high carrier extraction. Although more carriers are created in the cell due to increased absorption, decreased collection efficiency is related to recombination, which decreases Voc for thick perovskite layers. Device efficiency is improved by increasing the doping density up to 1018 cm−3 in the perovskite layer due to built-in electric field across the solar cell. Again a very thin or thick HTL is not ideal for high PCE. For low recombination and a high fill factor, an HTM (Spiro-OMeTAD) of 1–100 nm is necessary. The great power conversion efficiency of organic HTM based lead-free PSC brings up the new possibilities for obtaining renewable energy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

On reasonable request, the corresponding author will provide the datasets generated during the current work.

References

  • Bag, A., Radhakrishnan, R., Nekovei, R., Jeyakumar, R.: Effect of absorber layer, hole transport layer thicknesses, and its doping density on the performance of perovskite solar cells by device simulation. Sol. Energy 196, 177–182 (2020)

    Article  ADS  Google Scholar 

  • Bera, A., Wu, K., Sheikh, A., Alarousu, E., Mohammed, O.F., Wu, T.: Perovskite oxide SrTiO3 as an efficient electron transporter for hybrid perovskite solar cells. J. Phys. Chem. C 118(49), 28494–28501 (2014)

    Article  Google Scholar 

  • Burschka, J., Pellet, N., Moon, S.-J., Humphry-Baker, R., Gao, P., Nazeeruddin, M.K., Grätzel, M.: Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature 499(7458), 316–319 (2013)

    Article  ADS  Google Scholar 

  • Caputo, M., Cefarin, N., Radivo, A., Demitri, N., Gigli, L., Plaisier, J.R., Panighel, M., et al.: Electronic structure of MAPbI 3 and MAPbCl 3: Importance of band alignment. Sci. Rep. 9(1), 1–11 (2019)

    Article  Google Scholar 

  • Chang, C., Zou, X., Cheng, J., Yang, Y., Yao, Y., Ling, T., Ren, H.: NaI doping effect on photophysical properties of organic-lead-halide perovskite thin films by using solution process. Advan. Mater. Sci. Eng. 2019, 1–9 (2019)

    Google Scholar 

  • Dai, S., Wu, Y., Sakai, T., Du, Z., Sakai, H., Abe, M.: Preparation of highly crystalline TiO 2 nanostructures by acid-assisted hydrothermal treatment of hexagonal-structured nanocrystalline titania/cetyltrimethyammonium bromide nanoskeleton. Nanoscale Res. Lett. 5(11), 1829–1835 (2010)

    Article  ADS  Google Scholar 

  • De Los, S., Montoya, I., Cortina-Marrero, H.J., Ruíz-Sánchez, M.A., Hechavarría-Difur, L., Sánchez-Rodríguez, F.J., Courel, M., Hu, H.: Optimization of CH3NH3PbI3 perovskite solar cells: a theoretical and experimental study. Sol. Energy 199, 198–205 (2020)

    Article  ADS  Google Scholar 

  • Devi, C., Mehra, R.: Device simulation of lead-free MASnI 3 solar cell with CuSbS 2 (copper antimony sulfide). J. Mater. Sci. 54(7), 5615–5624 (2019)

    Article  ADS  Google Scholar 

  • Du, H.-J., Wang, W.-C., Zhu, J.-Z.: Device simulation of lead-free CH3NH3SnI3 perovskite solar cells with high efficiency. Chin. Phys. B 25(10), 108802 (2016)

    Article  ADS  Google Scholar 

  • Etgar, L., Gao, P., Xue, Z., Peng, Q., Chandiran, A.K., Liu, B., Nazeeruddin, M.K., Grätzel, M.: Mesoscopic CH3NH3PbI3/TiO2 heterojunction solar cells. J. Am. Chem. Soc. 134(42), 17396–17399 (2012)

    Article  Google Scholar 

  • Gao, F., Li, C., Qin, L., Zhu, L., Huang, X., Liu, H., Liang, L., et al.: Enhanced performance of tin halide perovskite solar cell by addition of lead thiocyanate. RSC Adv. 8(25), 14025–14030 (2018)

    Article  ADS  Google Scholar 

  • Gloeckler, M., Sites, J.R.: Efficiency limitations for wide-band-gap chalcopyrite solar cells. Thin Solid Films 480, 241–245 (2005)

    Article  ADS  Google Scholar 

  • Guo, N., Zhang, T., Li, G., Xu, F., Qian, X., Zhao, Y.: A simple fabrication of CH3NH3PbI3 perovskite for solar cells using low-purity PbI2. J. Semicond. 38(1), 014004 (2017)

    Article  ADS  Google Scholar 

  • Guo, Y., Xue, Y., Li, X., Li, C., Song, H., Niu, Y., Liu, H., Mai, X., Zhang, J., Guo, Z.: Effects of transition metal substituents on interfacial and electronic structure of CH3NH3PbI3/TiO2 interface: a first-principles comparative study. Nanomaterials 9(7), 966 (2019)

    Article  Google Scholar 

  • Hao, F., Stoumpos, C.C., Cao, D.H., Chang, R.P.H., Kanatzidis, M.G.: Lead-free solid-state organic–inorganic halide perovskite solar cells. Nat. Photon. 8(6), 489–494 (2014)

    Article  ADS  Google Scholar 

  • Hao, F., Stoumpos, C.C., Guo, P., Zhou, N., Marks, T.J., Chang, R.P.H., Kanatzidis, M.G.: Solvent-mediated crystallization of CH3NH3SnI3 films for heterojunction depleted perovskite solar cells. J. Am. Chem. Soc. 137(35), 11445–11452 (2015)

    Article  Google Scholar 

  • Huang, H.-H., Shih, Y.-C., Wang, L., Lin, K.-F.: Boosting the ultra-stable unencapsulated perovskite solar cells by using montmorillonite/CH 3 NH 3 PbI 3 nanocomposite as photoactive layer. Energy Environ. Sci. 12(4), 1265–1273 (2019)

    Article  Google Scholar 

  • Jahantigh, F., Safikhani, M.J.: The effect of HTM on the performance of solid-state dye-sanitized solar cells (SDSSCs): a SCAPS-1D simulation study. Appl. Phys. A Mater. Sci. Process. 125(4) (2019).

  • Jamalullail, N.U.R.N.A.E.I.M.A.H., Salwani-Mohamad, I.L.I., Natashah-Norizan, M.O.H.D., Mahmed, N.O.R.S.U.R.I.A.: The effect of temperature on anatase TiO2 photoanode for dye sensitized solar cell. In Solid State Phenomena, vol. 273, pp. 146–153. Trans Tech Publications Ltd (2018)

  • Jeyakumar, R., Bag, A., Nekovei, R., Radhakrishnan, R.: Interface studies by simulation on methylammonium lead iodide based planar perovskite solar cells for high efficiency. Sol. Energy 190, 104–111 (2019)

    Article  ADS  Google Scholar 

  • Kevin, M., Ong, W.L., Lee, G.H., Ho, G.W.: Formation of hybrid structures: copper oxide nanocrystals templated on ultralong copper nanowires for open network sensing at room temperature. Nanotechnology 22(23), 235701 (2011)

    Article  ADS  Google Scholar 

  • Khattak, Y.H., Baig, F., Toura, H., Beg, S., Soucase, B.M.: CZTSe kesterite as an alternative hole transport layer for MASnI 3 perovskite solar cells. J. Electron. Mater. 48(9), 5723–5733 (2019)

    Article  ADS  Google Scholar 

  • Klenk, R.: Characterisation and modelling of chalcopyrite solar cells. Thin Solid Films 387(1–2), 135–140 (2001)

    Article  ADS  Google Scholar 

  • Kojima, A., Teshima, K., Shirai, Y., Miyasaka, T.: Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 131(17), 6050–6051 (2009a)

    Article  Google Scholar 

  • Kojima, A., Teshima, K., Shirai, Y., Miyasaka, T.: Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 131(17), 6050–6051 (2009b)

    Article  Google Scholar 

  • Lazemi, M., Asgharizadeh, S., Bellucci, S.: A computational approach to interface engineering of lead-free CH 3 NH 3 SnI 3 highly-efficient perovskite solar cells. Phys. Chem. Chem. Phys. 20(40), 25683–25692 (2018)

    Article  Google Scholar 

  • Lee, M.M., Teuscher, J., Miyasaka, T., Murakami, T.N., Snaith, H.J.: Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites. Science 338(6107), 643–647 (2012)

    Article  ADS  Google Scholar 

  • Lee, Y.M., Maeng, I., Park, J., Song, M., Yun, J.-H., Jung, M.-C., Nakamura, M.: Comprehensive understanding and controlling the defect structures: An effective approach for organic-inorganic hybrid perovskite-based solar-cell application. Front. Energy Res. 6, 128 (2018)

    Article  ADS  Google Scholar 

  • Li, X., Yang, J., Jiang, Q., Lai, H., Li, S., Xin, J., Chu, W., Hou, J.: Low-temperature solution-processed ZnSe electron transport layer for efficient planar perovskite solar cells with negligible hysteresis and improved photostability. ACS Nano 12(6), 5605–5614 (2018)

    Article  Google Scholar 

  • Li, Y., Cole, M.D., Gao, Y., Emrick, T., Xu, Z., Liu, Y., Russell, T.P.: High-performance perovskite solar cells with a non-doped small molecule hole transporting layer. ACS Appl. Energy Mater. 2(3), 1634–1641 (2019)

    Article  Google Scholar 

  • Li, J., Hu, P., Chen, Y., Li, Y., Wei, M.: Enhanced performance of Sn-based perovskite solar cells by two-dimensional perovskite doping. ACS Sustain. Chem. Eng. 8(23), 8624–8628 (2020)

    Article  Google Scholar 

  • Lin, L., Jiang, L., Li, P., Fan, B., Qiu, Y.: A modeled perovskite solar cell structure with a Cu2O hole-transporting layer enabling over 20% efficiency by low-cost low-temperature processing. J. Phys. Chem. Solids 124, 205–211 (2019a)

    Article  ADS  Google Scholar 

  • Lin, R., Xiao, K., Qin, Z., Han, Q., Zhang, C., Wei, M., Saidaminov, M.I., et al.: Monolithic all-perovskite tandem solar cells with 24.8% efficiency exploiting comproportionation to suppress Sn (ii) oxidation in precursor ink. Nat. Energy 4(10), 864–873 (2019b)

    Article  ADS  Google Scholar 

  • Lipomi, D.J., Zhenan, B.: Stretchable, elastic materials and devices for solar energy conversion. Energy Environ. Sci. 4(9), 3314–3328 (2011)

    Article  Google Scholar 

  • Liu, D., Li, Q., Hu, J., Jing, H., Wu, K.: Predicted photovoltaic performance of lead-based hybrid perovskites under the influence of a mixed-cation approach: theoretical insights. J. Mater. Chem. C 7(2), 371–379 (2019)

    Article  Google Scholar 

  • Lyu, M., Yun, J.-H., Chen, P., Hao, M., Wang, L.: Addressing toxicity of lead: progress and applications of low-toxic metal halide perovskites and their derivatives. Adv. Energy Mater. 7(15), 1602512 (2017)

    Article  Google Scholar 

  • Ma, L., Hao, F., Stoumpos, C.C., Phelan, B.T., Wasielewski, M.R., Kanatzidis, M.G.: Carrier diffusion lengths of over 500 nm in lead-free perovskite CH3NH3SnI3 films. J. Am. Chem. Soc. 138(44), 14750–14755 (2016)

    Article  Google Scholar 

  • Markose, K.K., Shaji, M., Bhatia, S., Nair, P.R., Saji, K.J., Antony, A., Jayaraj, M.K.: Novel boron-doped p-type Cu2O thin films as a hole-selective contact in c-Si solar cells. ACS Appl. Mater. Interfaces 12(11), 12972–12981 (2020)

    Article  Google Scholar 

  • Mehmood, U., Al-Ahmed, A., Al-Sulaiman, F.A., Irfan-Malik, M., Shehzad, F., Khan, A.U.H.: Effect of temperature on the photovoltaic performance and stability of solid-state dye-sensitized solar cells: a review. Renew. Sustain. Energy Rev. 79, 946–959 (2017)

    Article  Google Scholar 

  • Minemoto, T., Murata, M.: Device modeling of perovskite solar cells based on structural similarity with thin film inorganic semiconductor solar cells. J. Appl. Phys. 116(5), 054505 (2014)

    Article  ADS  Google Scholar 

  • Minemoto, T., Murata, M.: Theoretical analysis on effect of band offsets in perovskite solar cells. Sol. Energy Mater. Sol. Cells 133, 8–14 (2015)

    Article  Google Scholar 

  • Ming, W., Yang, D., Li, T., Zhang, L., Du, M.-H.: Formation and diffusion of metal impurities in perovskite solar cell material CH3NH3PbI3: implications on solar cell degradation and choice of electrode. Adv. Sci. 5(2), 1700662 (2018)

    Article  Google Scholar 

  • Nocera, D.G.: Solar fuels and solar chemicals industry. Accounts Chem. Res. 50(3), 616–619 (2017)

    Article  Google Scholar 

  • Noel, N.K., Stranks, S.D., Abate, A., Wehrenfennig, C., Guarnera, S., Haghighirad, A.-A., Sadhanala, A., et al.: Lead-free organic–inorganic tin halide perovskites for photovoltaic applications. Energy Environ. Sci. 7(9), 3061–3068 (2014)

    Article  Google Scholar 

  • Noh, J.H., Im, S.H., Heo, J.H., Mandal, T.N., Seok, S.I.: Chemical management for colorful, efficient, and stable inorganic–organic hybrid nanostructured solar cells. Nano Lett. 13(4), 1764–1769 (2013)

    Article  ADS  Google Scholar 

  • Oku, T., Yamada, T., Fujimoto, K., Akiyama, T.: Microstructures and photovoltaic properties of Zn (Al) O/Cu2O-based solar cells prepared by spin-coating and electrodeposition. Coatings 4(2), 203–213 (2014)

    Article  Google Scholar 

  • Reddy, S.S., Gunasekar, K., Heo, J.H., Im, S.H., Kim, C.S., Kim, D.-H., Moon, J.H., Lee, J.Y., Song, M., Jin, S.-H.: Highly efficient organic hole transporting materials for perovskite and organic solar cells with long-term stability. Adv. Mater. 28(4), 686–693 (2016)

    Article  Google Scholar 

  • Sawicka-Chudy, P., Starowicz, Z., Wisz, G., Yavorskyi, R., Zapukhlyak, Z., Bester, M., Sibiński, M., Cholewa, M.: Simulation of TiO2/CuO solar cells with SCAPS-1D software. Mater. Res. Express 6(8), 085918 (2019)

    Article  ADS  Google Scholar 

  • Shih, Y.-C., Lan, Y.-B., Li, C.-S., Hsieh, H.-C., Wang, L., Wu, C.I., Lin, K.F.: Amino-acid-induced preferential orientation of Perovskite crystals for enhancing interfacial charge transfer and photovoltaic performance. Small 13(22), 1604305 (2017)

    Article  Google Scholar 

  • Stoumpos, C.C., Malliakas, C.D., Kanatzidis, M.G.: Semiconducting tin and lead iodide perovskites with organic cations: phase transitions, high mobilities, and near-infrared photoluminescent properties. Inorg. Chem. 52(15), 9019–9038 (2013)

    Article  Google Scholar 

  • Stranks, S.D., Eperon, G.E., Grancini, G., Menelaou, C., Alcocer, M.J.P., Leijtens, T., Herz, L.M., Petrozza, A., Snaith, H.J.: Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber. Science 342(6156), 341–344 (2013)

    Article  ADS  Google Scholar 

  • Su, Y., Kravets, V.G., Wong, S.L., Waters, J., Geim, A.K., Nair, R.R.: Impermeable barrier films and protective coatings based on reduced graphene oxide. Nat. Commun. 5(1), 1–5 (2014)

    Article  Google Scholar 

  • Takahashi, Y., Hasegawa, H., Takahashi, Y., Inabe, T.: Hall mobility in tin iodide perovskite CH3NH3SnI3: evidence for a doped semiconductor. J. Solid State Chem. 205, 39–43 (2013)

    Article  ADS  Google Scholar 

  • Tang, Z.-K., Xu, Z.-F., Zhang, D.-Y., Hu, S.-X., Lau, W.-M., Liu, L.-M.: Enhanced optical absorption via cation doping hybrid lead iodine perovskites. Sci. Rep. 7(1), 1–7 (2017)

    ADS  Google Scholar 

  • Vivo, P., Salunke, J.K., Priimagi, A.: Hole-transporting materials for printable perovskite solar cells. Materials 10(9), 1087 (2017)

    Article  Google Scholar 

  • Weiss, M., Horn, J., Richter, C., Schlettwein, D.: Preparation and characterization of methylammonium tin iodide layers as photovoltaic absorbers. Phys. Status Solid (a) 213(4), 975–981 (2016)

    Article  ADS  Google Scholar 

  • Yang, W.S., Park, B.-W., Jung, E.H., Jeon, N.J., Kim, Y.C., Lee, D.U., Shin, S.S., et al.: Iodide management in formamidinium-lead-halide–based perovskite layers for efficient solar cells. Science 356(6345), 1376–1379 (2017)

    Article  ADS  Google Scholar 

  • Yang, F., Kamarudin, M.A., Kapil, G., Hirotani, D., Zhang, P., Ng, C.H., Ma, T., Hayase, S.: Magnesium-doped MAPbI3 perovskite layers for enhanced photovoltaic performance in humid air atmosphere. ACS Appl. Mater. Interfaces. 10(29), 24543–24548 (2018)

    Article  Google Scholar 

  • Yang, H.-W., Rho, W.-Y., Lee, S.K., Kim, S.H., Hahn, Y.-B.: TiO2 nanoparticles/nanotubes for efficient light harvesting in perovskite solar cells. Nanomaterials 9(3), 326 (2019)

    Article  Google Scholar 

  • You, J., Hong, Z., Yang, Y., Chen, Q., Cai, M., Song, T.-B., Chen, C.-C., et al.: Low-temperature solution-processed perovskite solar cells with high efficiency and flexibility. ACS Nano 8(2), 1674–1680 (2014)

    Article  Google Scholar 

  • Yu, W., Li, F., Wang, H., Alarousu, E., Chen, Y., Lin, B., Wang, L., et al.: Ultrathin Cu 2 O as an efficient inorganic hole transporting material for perovskite solar cells. Nanoscale 8(11), 6173–6179 (2016a)

    Article  ADS  Google Scholar 

  • Yu, S., Li, L., Lyu, X., Zhang, W.: Preparation and investigation of nano-thick FTO/Ag/FTO multilayer transparent electrodes with high figure of merit. Sci. Rep. 6(1), 1–8 (2016b)

    Google Scholar 

  • Zhao, Z., Gu, F., Li, Y., Sun, W., Ye, S., Rao, H., Liu, Z., Bian, Z., Huang, C.: Mixed-organic-cation tin iodide for lead-free perovskite solar cells with an efficiency of 8.12%. Adv. Sci. 4(11), 1700204 (2017)

    Article  Google Scholar 

  • Zhou, Y., Hu, J., Wu, Y., Qing, R., Zhang, C., Xu, X., Jiang, M.: Review on methods for improving the thermal and ambient stability of perovskite solar cells. J. Photon. Energy 9(4), 040901 (2019)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

Dr. Marc Burgelman of University of Gent provided the SCAPS 1d simulator, which the authors gratefully acknowledge.

Funding

There is no funding agency for this study.

Author information

Authors and Affiliations

Authors

Contributions

AKD was in charge of all experimental activities, data collection and analysis, and the first draught of the manuscript. The final version of the manuscript was approved. The manuscript was revised by Dr. RM. Dr. DKM revised the manuscript and gave his approval to the final version.

Corresponding author

Correspondence to Aloke Kumar Das.

Ethics declarations

Conflict of interest

There are no conflicts of interest declared by the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Das, A.K., Mandal, R. & Mandal, D.K. Impact of HTM on lead-free perovskite solar cell with high efficiency. Opt Quant Electron 54, 455 (2022). https://doi.org/10.1007/s11082-022-03852-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-022-03852-z

Keywords

Navigation