Skip to main content
Log in

Design and analysis of a plasmonic split rings metasurface using characteristic mode theory for optical sensing

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

In this paper, a plasmonic metasurface is proposed and designed that has switching capability and it can be used as a quantum switch as well as an optical sensor. To provide the switching characteristic, Kerr material is used with dimer split ring resonator. The Kerr material is considered to change the response from Fano to Lorentzian shape, thus two logical values of \(\left| 0 \right\rangle\) and \(\left| 1 \right\rangle\) can be made at the Fano dip resonance. The Characteristic Mode Theory is investigated to predict the occurrence of the Fano response with exact wavelength. The study shows that Fano response appears when the phase of CMT modes is around 90°. As a result, the Kerr material can impact the phase of CMT modes, that makes switching characteristic for the proposed metasurface, by reducing the phase value to 40° for various Kerr material implementation in the metasurface. Also in this paper, using eigenvalues, the exact location of the Fano response, was obtained and bright and dark modes are detected without plotting characteristic currents. The proposed metasurface is developed for optical sensing with high sensitivity as a part of optical and quantum spectroscopy. The sensitivity of the sensor is obtained around 400 nm/RIU which is sufficient to distinguish the materials and to have high resolution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  • Alexoudi, T., Kanellos, G.T., Pleros, N.: Optical RAM and integrated optical memories: a survey. Light Sci. Appl. 9(1), 1–16 (2020)

    Article  Google Scholar 

  • Azzam, S.I., Kildishev, A.V., Ma, R.M., Ning, C.Z., Oulton, R., Shalaev, V.M., Stockman, M.I., Xu, J.L., Zhang, X.: Ten years of spasers and plasmonic nanolasers. Light Sci. Appl. 9(1), 1–21 (2020)

    Article  Google Scholar 

  • Barbillon, G.: Plasmonics and its applications. Materials 12(9), 1502 (2019)

    Article  ADS  Google Scholar 

  • Bin-Alam, M.S., Reshef, O., Mamchur, Y., Alam, M.Z., Carlow, G., Upham, J., Sullivan, B.T., et al.: Ultra-high-Q resonances in plasmonic metasurfaces. Nat. Commun. 12(1), 1–8 (2021)

    Article  Google Scholar 

  • Butet, J., Martin, O.J.F.: Fano resonances in the nonlinear optical response of coupled plasmonic nanostructures. Opt. Express 22(24), 29693–29707 (2014)

    Article  ADS  Google Scholar 

  • Chen, Y., Wang, C.F.: Characteristic Modes: Theory and Applications in Antenna Engineering. John Wiley & Sons, Hoboken (2015)

    Book  Google Scholar 

  • Dey, S., Chatterjee, D., Garboczi, E.J., Hassan, A.M.: Plasmonic nanoantenna optimization using characteristic mode analysis. IEEE Trans. Antennas Propag. 68(1), 43–53 (2019)

    Article  ADS  Google Scholar 

  • Ebrahimi, S., Sabbaghi-Nadooshan, R., Tavakoli, M.B.: DNA implementation for optical waveguide as a switchable transmission line and memristor. Opt. Quant. Electron. 50(4), 1–13 (2018)

    Google Scholar 

  • Eschimèse, D., Hsia, P., Vaurette, F., Deresmes, D., Bettignies, P.D., Schreiber, J., Chaigneau, M., Arscott, S., Lévêque, G., Mélin, T.: Comparative investigation of plasmonic properties between tunable nanoobjects and metallized nanoprobes for optical spectroscopy. J. Phys. Chem. C 123(46), 28392–28400 (2019)

    Article  Google Scholar 

  • Figueiredo, N.M., Vaz, F., Cunha, L., Cavaleiro, A.: Au-WO3 nanocomposite coatings for localized surface plasmon resonance sensing. Materials 13(1), 246 (2020)

    Article  ADS  Google Scholar 

  • Georgi, P., Massaro, M., Luo, K.H., Sain, B., Montaut, N., Herrmann, H., Weiss, T., Li, G., Silberhorn, C., Zentgraf, T.: Metasurface interferometry toward quantum sensors. Light Sci. Appl. 8(1), 1–7 (2019)

    Article  Google Scholar 

  • Gholami, A., Ahmadi-Shokouh, J., Dashti, H.: Analytical study of Fano phenomenon in plasmonic hexamer and heptamer using characteristic mode theory. Optik 243, 11–13 (2021)

  • Giannios, P., Toutouzas, K.G., Matiatou, M., Stasinos, K., Konstadoulakis, M.M., Zografos, G.C., Moutzouris, K.: Visible to near-infrared refractive properties of freshly-excised human-liver tissues: marking hepatic malignancies. Sci. Rep. 6(1), 1–10 (2016)

    Article  Google Scholar 

  • Hatab, N.A., Hsueh, C.H., Gaddis, A.L., Retterer, S.T., Li, J.H., Eres, G., Zhang, Z., Gu, B.: Free-standing optical gold bowtie nanoantenna with variable gap size for enhanced Raman spectroscopy. Nano Lett. 10(12), 4952–4955 (2020)

    Article  ADS  Google Scholar 

  • Jha, P.K., Shitrit, N., Kim, J., Ren, X., Wang, Y., Zhang, X.: Metasurface-mediated quantum entanglement. ACS Photonics 5(3), 971–976 (2017)

    Article  Google Scholar 

  • Jiang, N., Zhuo, X., Wang, J.: Active plasmonics: principles, structures, and applications. Chem. Rev. 118(6), 3054–3099 (2017)

    Article  Google Scholar 

  • Johnson, P.B., Christy, R.W.: Optical constants of the noble metals. Phys. Rev. B 6(12), 4370 (1972)

    Article  ADS  Google Scholar 

  • Kasani, S., Curtin, K., Wu, N.: A review of 2D and 3D plasmonic nanostructure array patterns: fabrication, light management and sensing applications. Nanophotonics 8(12), 2065–2089 (2019)

    Article  Google Scholar 

  • King, N.S., Liu, L., Yang, X., Cerjan, B., Everitt, H.O., Nordlander, P., Halas, N.J.: Fano resonant aluminum nanoclusters for plasmonic colorimetric sensing. ACS Nano 9(11), 10628–10636 (2015)

    Article  Google Scholar 

  • Lin, G.Q., Yang, H., Deng, Y.D., Wu, D., Zhou, X., Wu, Y., Cao, G., Chen, J., Sun, W., Zhou, R.: Ultra-compact high-sensitivity plasmonic sensor based on Fano resonance with symmetry breaking ring cavity. Opt. Express 27(23), 33359–33368 (2019)

    Article  ADS  Google Scholar 

  • Liu, K., Xue, X., Sukhotskiy, V., Furlani, E.P.: Optical fano resonance in self-assembled magnetic–plasmonic nanostructures. J. Phys. Chem. C 120(48), 27555–27561 (2016)

    Article  Google Scholar 

  • Martinsson, E., Otte, M.A., Shahjamali, M.M., Sepulveda, B., Aili, D.: Substrate effect on the refractive index sensitivity of silver nanoparticles. J. Phys. Chem. C 118(42), 24680–24687 (2014)

    Article  Google Scholar 

  • Mejía-Salazar, J.R., Oliveira, O.N., Jr.: Plasmonic biosensing: focus review. Chem. Rev. 118(20), 10617–10625 (2018)

    Article  Google Scholar 

  • Nordlander, P.: The ring: a leitmotif in plasmonics. ACS Nano 3(3), 488–492 (2009)

    Article  Google Scholar 

  • Panoiu, N.C., Sha, W.E.I., Lei, D.Y., Li, G.C.: Nonlinear optics in plasmonic nanostructures. J. Opt. 20(8), 7–16 (2018)

  • Petryayeva, E., Krull, U.J.: Localized surface plasmon resonance: Nanostructures, bioassays and biosensing—A review. Anal. Chim. Acta 706(1), 8–24 (2011)

    Article  Google Scholar 

  • Saylan, Y., Akgönüllü, A., Denizli, A.: Plasmonic sensors for monitoring biological and chemical threat agents. Biosensors 10(10), 3–9 (2020)

  • Schab, K.R., Outwater, J.M., Young, M.W., Bernhard, J.T.: Eigenvalue crossing avoidance in characteristic modes. IEEE Trans. Antennas Propag. 64(7), 2617–2627 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Shrivastav, A.M., Cvelbar, U., Abdulhalim, I.: A comprehensive review on plasmonic-based biosensors used in viral diagnostics. Commun. Biol. 4(1), 1–12 (2021)

    Article  Google Scholar 

  • Singh, M., Datta, A.: LSPR excitation on Au nanorings from integrated hybrid plasmonic aperture waveguide and its application in methanol detection in the IR-Band. IEEE Sens. J. 19(15), 6119–6125 (2019)

    Article  ADS  Google Scholar 

  • Stockman, M.I.: Nanoplasmonic sensing and detection. Science 348(6232), 287–288 (2015)

    Article  ADS  Google Scholar 

  • Tavakoli, F., Zarrabi, F.B., Saghaei, H.: Modeling and analysis of high-sensitivity refractive index sensors based on plasmonic absorbers with Fano response in the near-infrared spectral region. Appl. Opt. 58(20), 5404–5414 (2019)

    Article  ADS  Google Scholar 

  • Vardi, Y., Cohen-Hoshen, E., Shalem, G., Bar-Joseph, I.: Fano resonance in an electrically driven plasmonic device. Nano Lett. 16(1), 748–752 (2016)

    Article  ADS  Google Scholar 

  • Wang, H.: Plasmonic refractive index sensing using strongly coupled metal nanoantennas: nonlocal limitations. Sci. Rep. 8(1), 1–8 (2018)

  • Wang, K., Titchener, J.G., Kruk, S.S., Xu, L., Chung, H.P., Parry, M., Kravchenko, I.I., et al.: Quantum metasurface for multiphoton interference and state reconstruction. Science 361(6407), 1104–1108 (2018)

    Article  ADS  Google Scholar 

  • Wang, M., Zhang, M., Wang, Y., Zhao, R., Yan, S.: Fano resonance in an asymmetric MIM waveguide structure and its application in a refractive index nanosensor. Sensors 19(4), 4–7 (2019)

  • Ylä-Oijala, P., Tzarouchis, D.C., Raninen, E., Sihvola, A.: Characteristic mode analysis of plasmonic nanoantennas. IEEE Trans. Antennas Propag. 65(5), 2165–2172 (2017)

    Article  ADS  Google Scholar 

  • Zarrabi, F.B., Moghadasi, M.N.: Investigated the Fano resonance in the nano ring arrangement. Optik 100(138), 80–86 (2017)

    Article  ADS  Google Scholar 

  • Zhan, S., Li, H., He, Z., Li, B., Chen, Z., Xu, H.: Sensing analysis based on plasmon induced transparency in nanocavity-coupled waveguide. Opt. Express 23(16), 20313–20320 (2015)

    Article  ADS  Google Scholar 

  • Zhou, F., Liu, Y., Li, Z.Y., Xia, Y.: Analytical model for optical bistability in nonlinear metal nano-antennae involving Kerr materials. Opt. Express 18(13), 13337–13344 (2010)

    Article  ADS  Google Scholar 

  • Zhou, J., Liu, S., Qian, H., Li, Y., Luo, H., Wen, S., Zhou, Z., Guo, G., Shi, B., Liu, Z.: Metasurface enabled quantum edge detection. Sci. Adv. 6(51), 2–5 (2020)

Download references

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Javad Ahmadi-Shokouh.

Ethics declarations

Conflict of interest

The authors have not disclosed any competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gholami, A., Ahmadi-Shokouh, J. & Dashti, H. Design and analysis of a plasmonic split rings metasurface using characteristic mode theory for optical sensing. Opt Quant Electron 54, 459 (2022). https://doi.org/10.1007/s11082-022-03849-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-022-03849-8

Keywords

Navigation