Skip to main content
Log in

The electronic structure of graphene like C20H10CdN6O8.5 metal–organic nanotube (MONT) based on FP-LAPW: for optoelectronic and thermoelectric devices

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

In this work, optoelectronic and thermoelectric properties of C20H10CdN6O8.5 metal–organic nanotube (MONT) were studied by the full-potential linearized augmented-plane wave (FP-LAPW) method. The general gradient approximation (GGA) is used for the calculation of exchange–correlation potentials in the first principle calculations. Strongly influenced optical and thermoelectric properties were observed due to the existence of deep trap bands in the energy band structure of C20H10CdN6O8.5 nanotubes. Calculated band structure shows the wide band gap nature with semi-metal characteristics. Furthermore, the high Seebeck coefficient and figure of merit values of 2920 (µV/K) and 1.007 also confirm this nanotube could be useful in the manufacturing of optoelectronic and thermoelectric devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

There is not the data associated with the manuscript.

Code availability

Wien2k and BoltzTrap codes

References

  • Balbo Block, M.A., Hecht, S.: Wrapping peptide tubes: merging biological self-assembly and polymer synthesis. Angew. Chem. Int. Ed. 44(43), 6986–6989 (2005)

    Article  Google Scholar 

  • Batten, S. R., Champness, N. R., Chen, X. M., Garcia-Martinez, J., Kitagawa, S., Öhrström, L., ..., Reedijk, J.: Coordination polymers, metal–organic frameworks and the need for terminology guidelines. Cryst. Eng. Comm. 14(9), 3001–3004 (2012)

  • Block, M.A.B., Kaiser, C., Khan, A., Hecht, S.: Discrete organic nanotubes based on a combination of covalent and non-covalent approaches. Top. Curr. Chem 245, 89–150 (2005)

    Article  Google Scholar 

  • Hosseini, S.M., Rahnamaye Aliabad, H.A., Kompany, A.: First-principles study of the optical properties of pure α-Al2O3 and La aluminates. Eur. Phys. J. B-Condensed Matter Complex Syst. 43, 439–444 (2005)

    Article  Google Scholar 

  • Huang, X.C., Luo, W., Shen, Y.F., Lin, X.J., Li, D.: A metal–organic framework containing discrete single-walled nanotubes based on curved trinuclear [Cu33-O)(μ-OH)(triazolate)2]+ building blocks. Chem. Commun. 34, 3995–3997 (2008)

    Article  Google Scholar 

  • Iijima, S.: Helical microtubules of graphitic carbon. Nature 354(6348), 56–58 (1991)

    Article  ADS  Google Scholar 

  • Kim, Y., Mayer, M.F., Zimmerman, S.C.: A new route to organic nanotubes from porphyrin dendrimers. Angew. Chem. Int. Ed. 42, 1121–1126 (2003)

    Article  Google Scholar 

  • Lewis, A.: Evidence for the Mott model of hopping conduction in the anneal stable state of amorphous silicon. Phys. Rev. Lett. 29, 1555–1558 (1972)

    Article  ADS  Google Scholar 

  • Li, X.-M., Dong, L.-Z., Li, S.-L., Xu, G., Liu, J., Zhang, F.-M., Lu, L.-S., Lan, Y.-Q.: Synergistic conductivity effect in a proton sources-coupled metal-organic framework. ACS Energy Lett. 2, 2313–2318 (2017)

    Article  Google Scholar 

  • Long, J.R., Yaghi, O.M.: The pervasive chemistry of metal–organic frameworks. Chem. Soc. Rev. 38(5), 1213–1214 (2009)

    Article  Google Scholar 

  • Madsen, G.K.H., Singh, D.J.: BoltzTraP. A code for calculating band-structure dependent quantities. Comput. Phys. Commun. 175, 67–71 (2006)

    Article  ADS  Google Scholar 

  • Orr, G.W., Barbour, L.J., Atwood, J.L.: Controlling molecular self-organization: formation of nanometer-scale spheres and tubules. Science 285(5430), 1049–1052 (1999)

    Article  Google Scholar 

  • Paddison, S.J.: Proton conduction mechanisms at low degrees of hydration in sulfonic acid–based polymer electrolyte membranes. Annu. Rev. Mater. Res. 33(1), 289–319 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  • Panda, T., Kundu, T., Banerjee, R.: Self-assembled one dimensional functionalized metal–organic nanotubes (MONTs) for proton conduction. Chem. Commun. 48(44), 5464–5466 (2012)

    Article  Google Scholar 

  • Phang, W.J., Jo, H., Lee, W.R., Song, J.H., Yoo, K., Kim, B., Hong, C.S.: Superprotonic conductivity of a UiO-66 framework functionalized with sulfonic acid groups by facile postsynthetic oxidation. Angew. Chem. Int. Ed. 54, 5142–5146 (2015)

    Article  Google Scholar 

  • Rahnamaye Aliabad, H.A., Bashi, M.: Cobalt phthalocyanine polymer for optoelectronic and thermoelectric applications. J. Mater. Sci-Mater. El. 20, 18720–18728 (2019)

    Article  Google Scholar 

  • Rahnamaye Aliabad, H.A., Hosseini, S.M., Kompany, A., Youssefi, A., AttaranKakhki, E.: Optical properties of pure and transition metal-doped indium oxide. Phys. Status Solidi (B) 246, 1072–1081 (2009)

    Article  ADS  Google Scholar 

  • Rahnamaye Aliabad, H.A., Nodehi, Z., Maleki, B., Abareshi, A.: Electronical and thermoelectric properties of half-Heusler ZrNiPb under pressure in bulk and nanosheet structures for energy conversion. Rare Met. 38(11), 1015–1023 (2019)

    Article  Google Scholar 

  • Ramaswamy, P., Wong, N.E., Gelfand, B.S., Shimizu, G.K.: A Water Stable Magnesium MOF That Conducts Protons over 10 S cm-1. J. Am. Chem. Soc. 137, 7640–7643 (2015)

    Article  Google Scholar 

  • Schwarz, K., Blaha, P., Madsen, G.K.H.: Electronic structure calculations of solids using the WIEN2k package for material sciences. Comput. Phys. Commun. 147, 71–76 (2002)

    Article  ADS  Google Scholar 

  • Sharma, J., Chhabra, R., Cheng, A., Brownell, J., Liu, Y., Yan, H.: Control of self-assembly of DNA tubules through integration of gold nanoparticles. Science 323(5910), 112–116 (2009)

    Article  ADS  Google Scholar 

  • Terrones, M., Hsu, W. K., Kroto, H. W., Walton, D. R.: Nanotubes: a revolution in materials science and electronics. Fullerenes and related structures. 189–234 (1999)

  • Xiong, W., Du, F., Liu, Y., Perez Jr, A., Supp, M., Ramakrishnan, T. S., ..., Jiang, L. I.: 3-D carbon nanotube structures used as high performance catalyst for oxygen reduction reaction. J. Am. Chem. Soc. 132(45), 15839–15841 (2010)

  • Zhai, Q.G., Mao, C., Zhao, X., Lin, Q., Bu, F., Chen, X., Bu, X., Feng, P.: Cooperative crystallization of heterometallic indium chromium metal-organic polyhedra and their fast proton conductivity. Angew. Chem. Int. Ed. 54, 7886–7890 (2015)

    Article  Google Scholar 

Download references

Acknowledgements

We thank Prof. Blaha and Prof. Madsen of Vienna University of Technology, Austria, for their help in the use of Wien2k and BoltzTrap packages.

Funding

No funding was received for this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. A. Rahnamaye Aliabad.

Ethics declarations

Conflicts of interest/Competing interests

No conflict of interest exists.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rahnamaye Aliabad, H.A., Vahidi, H., Khalid, M. et al. The electronic structure of graphene like C20H10CdN6O8.5 metal–organic nanotube (MONT) based on FP-LAPW: for optoelectronic and thermoelectric devices. Opt Quant Electron 54, 435 (2022). https://doi.org/10.1007/s11082-022-03848-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-022-03848-9

Keywords

Navigation