Skip to main content
Log in

Investigations on spectrum sliced-wavelength-division multiplexed visible light communication transmission for underwater links under varying turbulent conditions

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

Underwater visible light communication (UVLC) transmission systems have garnered significant attraction in comparison to their radio-frequency and acoustic counterparts due to their inherit merit of significantly higher channel bandwidth. We propose the modelling of a novel spectrum sliced-wavelength-division multiplexed UVLC transmission system. In the proposed work, a single 532 nm blue-green laser diode is spectrum sliced into 4 distinct wavelengths by employing a 1 \(\times\) 4 de-multiplexer, where each wavelength transmits independent 10 Gbit/s binary data through the underwater channel. At the receiver terminal, independent signals are retrieved and the performance is investigated using bit-error rate, eye diagrams and quality factor (Q Factor) with increasing underwater transmission range. Furthermore, the system’s performance is compared for non-return-to-zero (NRZ), return-to-zero (RZ), and alternative mark inverted modulation techniques under water turbulent conditions including coastal ocean, pure sea, and clear ocean, and beam divergence. The reported results demonstrate superior NRZ modulation scheme performance and a reliable 40 Gbit/s transmission along 260m–60 m depending on the type of water turbulence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

No data sets were generated or analyzed in the present study.

Code availability

Present work was done using Optisystem tool.

References

  • Al-Kinani, A., Wang, C.X., Zhou, L., Zhang, W.: Optical wireless communication channel measurements and models. IEEE Commun. Surv. Tutor. 20, 1939–1962 (2018)

    Article  Google Scholar 

  • Cochenour, B., Mullen, L., Laux, A.: Phase coherent digital communications for wireless optical links in turbid underwater environments. In: OCEANS 2007, Aberdeen Scotland UK, 18–21 June 2007 (2007)

  • Doniec, M., Vasilescu, I., Mandar, C., Detweiler, C., Hoffmann-Kuhnt, M., Rus, D.: AquaOptical: a lightweight device for high-rate long-range underwater point-to-point communication. Mar. Technol. Soc. J. 44(4), 55–65 (2009)

    Article  Google Scholar 

  • Doniec, M., Detweiler, C., Vasilescu, I., Rus, D.: Using optical communication for remote underwater robot operation. In: 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Taipei Taiwan, 18–22 October 2010, pp. 4017–4022 (2010)

  • Doniec, M., Xu, A., Rus, D.: Robust real-time underwater digital video streaming using optical communication. In: Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), Karlsruhe, Germany, 6–10 May (2013)

  • Elamassie, M., Karbalayghareh, M., Miramirkhani, F., Uysal, M.: Adaptive DCO-OFDM for underwater visible light communications. In: 2019 27th Signal Processing and Communications Applications Conference (SIU), pp. 1–4. https://doi.org/10.1109/SIU.2019.8806323

  • Elsayed, E.E., Yousif, B.B., Singh, M.: Performance enhancement of hybrid fiber wavelength division multiplexing passive optical network FSO systems using M-ary DPPM techniques under interchannel crosstalk and atmospheric turbulence. Opt. Quantum Electron. 54, 116 (2022). https://doi.org/10.1007/s11082-021-03485-8

    Article  Google Scholar 

  • Farr, N. et al.: Optical modem technology for seafloor observatories. In: Proceedings of Ocean 2005 MTS/IEEE, pp. 1–7 (2006)

  • Farr, N., Ware, J., Pontbriand, C., Hammar, T., Tivey, M.: Optical communication system expands cork seafloor observatory’s bandwidth. In: OCEANS 2010, Sydney Australia, 24–27 May 2010 (2010)

  • Gabriel, C., Khalighi, M.A., Bourennane, S., Leon, P., Rigaud, V.: Monte-Carlo-based channel characterization for underwater optical communication systems. J. Opt. Commun. Netw. 5(1), 1–12 (2013)

    Article  Google Scholar 

  • Gupta, S.K.: Spectral transmission studies of ocean water under different sea conditions. Def. Sci. J. 34(1), 19–28 (1984)

    Article  Google Scholar 

  • Hanson, F., Radic, S.: High bandwidth underwater optical communication. Appl. Opt. 47(2), 277–283 (2008)

    Article  ADS  Google Scholar 

  • Kaushal, H., Kaddoum, G.: Underwater opticalwireless communication. IEEE Access 4, 1518–1547 (2016)

    Article  Google Scholar 

  • Malathy, S., Singh, M., Malhotra, J., et al.: Modeling and performance investigation of 4 × 20 Gbps underwater optical wireless communication link incorporating space division multiplexing of Hermite Gaussian modes. Opt Quant Electron 52, 1–18 (2020). https://doi.org/10.1007/s11082-020-02380-y

    Article  Google Scholar 

  • Ochi, H., Watanabe, Y., Shimura, T.: Basic study of underwater acoustic communication using 32-quadrature amplitude modulation. Jpn. J. Appl. Phys. 44(6B), 4689–4693 (2005)

    Article  ADS  Google Scholar 

  • Pelekanakis, C., Stojanovic, M., Freitag, L.: High rate acoustic link for underwater video transmission, vol. 2, pp. 1091–1097 (2008)

  • Pontbriand, C., Farr, N., Ware, J., Preisig, J., Popenoe, H.: Diffuse high-bandwidth optical communications. OCEANS. 2008, pp. 1–4 (2008). https://doi.org/10.1109/OCEANS.2008.5151977

  • Rehman, S.U., Ullah, S., Chong, P.H.J., Yongchareon, S., Komosny, D.: Visible light communication: a system perspective—overview and challenges. Sensors 19, 1153 (2019)

    Article  ADS  Google Scholar 

  • Santos, R., Orozco, J., Micheletto, M., Ochoa, S., Meseguer, R., Millan, P., Molina, C.: Real-time communication support for underwater acoustic sensor networks. Sensors 17, 1629 (2017)

    Article  ADS  Google Scholar 

  • Singh, M.: Enhanced performance analysis of inter-aircraft optical wireless communication link (IaOWC) using EDFA pre-amplifier. Wirel. Pers. Commun. 97, 4199–4209 (2017). https://doi.org/10.1007/s11277-017-4720-3

    Article  ADS  Google Scholar 

  • Singh, M., Malhotra, J.: 4×20Gbit/s-40GHzOFDM based radio over FSO transmission link incorporating hybrid wavelength division multiplexing-mode division multiplexing of LG and HG modes with enhanced detection. In: Optoelectronics and Advanced Materials—Rapid Communications, vol. 14, 5–6 May to June 2020a, pp. 233–243 (2020a)

  • Singh, M., Malhotra, J.: 40Gbit/s-80GHz hybrid MDM-OFDM-multibeam based RoFSO transmission link under the effect of adverse weather conditions with enhanced detection. In: Optoelectronics and Advanced Materials—Rapid Communications, vol. 14, 3–4 March to April 2020c, pp. 146–153 (2020b)

  • Singh, M., Malhotra, J.: Performance comparison of 2 × 20 Gbit/s-40 GHz OFDM based RoFSO transmission link incorporating MDM of Hermite Gaussian modes using different modulation schemes. Wirel. Pers. Commun. 110, 699–711 (2020c). https://doi.org/10.1007/s11277-019-06750-y

    Article  Google Scholar 

  • Singh, M., Malhotra, J.: A high-capacity single-channel MDM-OFDM-IsOWC transmission link with improved detection. Wirel. Pers. Commun. 123, 1987–2010 (2021). https://doi.org/10.1007/s11277-021-09225-1

    Article  Google Scholar 

  • Singh, M., Singh, M.L., Singh, G., et al.: Modeling and performance evaluation of underwater wireless optical communication system in the presence of different sized air bubbles. Opt. Quant. Electron. 52, 1–15 (2020). https://doi.org/10.1007/s11082-020-02638-5

    Article  Google Scholar 

  • Singh, M., Singh, M.L., Singh, G., Gill, H.S.: Statistical channel model for underwater wireless optical communication system under a wide range of air bubble populations. Opt. Eng. 60(3), 036111 (2021a)

    Article  ADS  Google Scholar 

  • Singh, M., Singh, M.L., Singh, G., Kaur, H., Priyanka, K.S.: Real-time image transmission through underwater wireless optical communication link for Internet of Underwater Things. Int. J. Commun. Syst. 34(16), e4951 (2021b). https://doi.org/10.1002/dac.4951

    Article  Google Scholar 

  • Singh, M., Grover, A., Kumari, M., Sheetal, A., Sharma, R., Malhotra, J.: A hybrid wavelength-mode division multiplexing-based inter-satellite optical wireless communication link. In: Optoelectronics and Advanced Materials—Rapid Communications, vol. 15, 9–10 September-October 2021, pp. 448–458 (2021c)

  • Singh, K., Chebaane, S., Ben Khalifa, S., et al.: Investigations on mode-division multiplexed free-space optical transmission for inter-satellite communication link. Wirel. Netw. 28, 1003–1016 (2022a). https://doi.org/10.1007/s11276-022-02894-1

    Article  Google Scholar 

  • Singh, M., Singh, M.L., Singh, R.: Performance enhancement of 112 Gbps UWOC link by mitigating the air bubbles induced turbulence with coherent detection MIMO DP-16QAM and advanced digital signal processing. Optik 259, 168986 (2022b). https://doi.org/10.1016/j.ijleo.2022.168986

    Article  ADS  Google Scholar 

  • Snow, J.B. et al.: Underwater propagation of high-data- rate laser communications pulses. In: Ocean Optics XI, 1992, vol. 1750, December 1992, pp. 419–427 (1992)

  • Song, H.C., Hodgkiss, W.S.: Efficient use of bandwidth for underwater acoustic communication. J. Acoust. Soc. Am. 134(2), 905–908 (2013)

    Article  ADS  Google Scholar 

  • Song, A., Stojanovic, M., Chitre, M.: Editorial underwater acoustic communications: where we stand and what is next? IEEE J. Ocean. Eng. 44(1), 1–6 (2019)

    Article  Google Scholar 

  • Stojanovic, M.: Recent advances in high-speed underwater acoustic communications. IEEE J. Ocean. Eng. 21(2), 125–136 (1996)

    Article  ADS  Google Scholar 

  • Tian, P., Liu, X., Yi, S., Huang, Y., Zhang, S., Zhou, X., Laigui, Hu., Zheng, L., Liu, R.: High-speed underwater optical wireless communication using a blue GaN-based micro-LED. Opt. Express 25, 1193–1201 (2017)

    Article  ADS  Google Scholar 

  • Tokgoz, S.C., Boluda-Ruiz, R., Yarkan, S., Qaraqe, K.A.: ACO-OFDM transmission over underwater pipeline for VLC-based systems. In: 2019 IEEE 30th Annual International Symposium on Personal Indoor and Mobile Radio Communications (PIMRC). https://doi.org/10.1109/PIMRC.2019.8904379

  • Urick, R.J.: Principles of Underwater Sound, Peninsula Pub (1983)

  • Vasilescu, I., Kotay, K., Rus, D., Dunbabin, M., Corke, P.: Data collection, storage, and retrieval with an underwater sensor network. In: ACM Proceedings of 3rd International Conference on Embedded Networked Sensor Systems (SenSys), San Diego California USA, 2–4 November 2005, pp. 154–165 (2005)

  • Zielinski, A., Young-Hoon Yoon, Y.H., Lixue Wu, L.: Performance analysis of digital acoustic communication in a shallow water channel. IEEE J. Ocean. Eng. 20(4), 293–299 (1995)

    Article  ADS  Google Scholar 

Download references

Funding

No funding was received for this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Janarthanan M.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

M, J., Gauni, S. Investigations on spectrum sliced-wavelength-division multiplexed visible light communication transmission for underwater links under varying turbulent conditions. Opt Quant Electron 54, 487 (2022). https://doi.org/10.1007/s11082-022-03841-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-022-03841-2

Keywords

Navigation