Skip to main content
Log in

Soliton solutions and fractional-order effect on solitons to the nonlinear optics model

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

The space–time fractional nonlinear Tzitzeica–Dodd–Bullough (TDB) equation is an important model in nonlinear optics, quantum field theory, plasma physics, solid-state physics among other domains. Through the Painlevé and fractional wave transformations, the space–time fractional nonlinear TDB equation has been converted to a nonlinear equation. Broad-spectral and standard closed-form soliton solutions in the form of exponential, rational, trigonometric, and hyperbolic functions with free parameters have been achieved using the improved Bernoulli sub-equation function (IBSEF) approach. The solutions established in this article are comprehensive and sophisticated, and the results found in the literature are a special case of the results obtained. The effect of the fractional parameter \(\mu\) on the wave profiles of the phenomena has been examined by defining 3D, 2D, and contour plots of the soliton solutions, and it is found that the fractional parameter has a significant impact. The results attained demonstrate that the IBSEF approach is compatible, useful, and capable of providing wide-spectral analytical wave solutions to fractional nonlinear models arising in optics, mathematical physics, and engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

This manuscript has no associated data.

References

  • Abazari, R.: The (G’/G)-expansion method for Tzitzéica type nonlinear evolution equations. Math. Comput. Model. 52(9–10), 1834–1845 (2010)

    MATH  Google Scholar 

  • Abdeljawad, T.: On conformable fractional calculus. J. Comput. Appl. Math. 279, 57–66 (2015)

    MathSciNet  MATH  Google Scholar 

  • Ahmad, I., Ahmad, H., Inc, M., Rezazadeh, H., Akbar, M.A., Khater, M.M.A., Akinyemi, L., Jhangeer, A.: Solution of fractional-order Korteweg-de Vries and Burgers’ equations utilizing local meshless method. J. Ocean Eng. Sci. (2021). https://doi.org/10.1016/j.joes.2021.08.014

    Article  Google Scholar 

  • Akinyemi, L., Akpan, U., Veeresha, P., Rezazadeh, H., Inc, M.: Computational techniques to study the dynamics of generalized unstable nonlinear Schrödinger equation. J. Ocean Eng. Sci. (2022). https://doi.org/10.1016/j.joes.2022.02.011

    Article  Google Scholar 

  • Ala, V., Demirbilek, U., Mamedov, K.R.: On the exact solutions to conformable equal width wave equation by improved Bernoulli sub-equation function method. Bull. South Ural State Univ. Ser. Math. Mech. Phys. 13(3), 1–13 (2021)

    MATH  Google Scholar 

  • Ali, K.K., Yilmazer, R., Osman, M.S.: Dynamic behavior of the (3+1)-dimensional KdV-Calogero-Bogoyavlenskii-Schif equation. Opt. Quant. Electron. 54, 160 (2022)

    Google Scholar 

  • Aljoudi, S.: Exact solutions of the fractional Sharma-Tasso-Olver equation and the fractional Bogoyavlenskii’s breaking soliton equations. Appl. Math. Comput. 405, 126237 (2021)

    MathSciNet  MATH  Google Scholar 

  • Almeida, R.: A Caputo fractional derivative of a function with respect to another function. Commun. Nonlin. Sci. Numer. Simulat. 44, 460–481 (2017)

    ADS  MathSciNet  MATH  Google Scholar 

  • Altwaty, A.A., Hassan, S.M., Masry, B.R.: Optical solitons with fractional temporal evolution in fiber Bragg gratings with generalized anti-cubic nonlinearity by the fractional Riccati method. Results Phys. 22, 103872 (2021)

    Google Scholar 

  • Arqub, O.A., Al-Smadi, M., Almusawa, H., Baleanu, D., Hayat, T., Alhodaly, M., Osman, M.S.: A novel analytical algorithm for generalized fifth-order time-fractional nonlinear evolution equations with conformable time derivative arising in shallow water waves. Alex. Eng. J. 61, 5753–5769 (2022)

    Google Scholar 

  • Baskonus, H.M., Bulut, H.: On the complex structures of Kundu-Eckhaus equation via improved Bernoulli sub-equation function method. Waves Random Complex Media 25(4), 720–728 (2015)

    ADS  MathSciNet  MATH  Google Scholar 

  • Borhanifar, A., Moghanlu, A.Z.: Application of the (G’/G)-expansion method for the Zhiber-Shabat equation and other related equations. Math. Comput. Model. 54(9–10), 2109–2116 (2011)

    MathSciNet  MATH  Google Scholar 

  • Demirbilek, U., Ala, V., Mamedov, K.R.: Exact solutions of conformable time fractional Zoomeron equation via IBSEFM. Appl. Math. A J. Chin. Univ. 36(4), 554–563 (2021)

    MathSciNet  MATH  Google Scholar 

  • Demirbileko, U., Ala, V., Mamedov, K.R.: An application of improved Bernoulli sub-equation function method to the nonlinear conformable time-fractional equation. Tbilisi Math. J. 14(3), 59–70 (2021)

    MathSciNet  MATH  Google Scholar 

  • Ghanbari, B., Rada, L.: Solitary wave solutions to the Tzitzeica type equations obtained by a new efficient approach. J. Appl. Anal. Comput. 9(2), 568–589 (2019)

    MathSciNet  MATH  Google Scholar 

  • Hosseini, K., Ayati, Z., Ansari, R.: New exact solutions of the Tzitzéica-type equations in non-linear optics using the exp a function method. J. Modern Opt. 65(7), 847–851 (2018)

    ADS  Google Scholar 

  • Ilhan, O.A., Baskonus, H.M., Islam, M.N., Akbar, M.A., Soybaş, D.: Stable soliton solutions to the time fractional evolution equations in mathematical physics via the new generalized -expansion method. J. Nonlinear Sci. Numer. Simul. Int (2021). https://doi.org/10.1515/ijnsns-2020-0153

    Article  Google Scholar 

  • Inan, B., Osman, M.S., Turgut, A., Baleanu, D.: Analytical and numerical solutions of mathematical biology models: the Newell–Whitehead–Segel and Allen-Cahn equations. Math. Met. Appl. Sci. 43(5), 2588–2600 (2020)

    MathSciNet  MATH  Google Scholar 

  • Islam, M.N., Miah, M.M., Rahman, M.A., Akbar, M.A.: Adequate closed form wave solutions to the space-time fractional nonlinear equations in physical sciences. Partial Differ. Equ. Appl. Math. 3, 100024 (2021a)

    Google Scholar 

  • Islam, M.E., Kundu, P.R., Akbar, M.A., Gepreel, K.A., Alotaibi, H.: Study of the parametric effect of self-control waves of the Nizhnik–Novikov–Veselov equation by the analytical solutions. Results Phys. 22, 103887 (2021b)

    Google Scholar 

  • Islam, M.E., Barman, H.K., Akbar, M.A.: Stable soliton solutions to the nonlinear low-pass electrical transmission lines and the Cahn-Allen equation. Heliyon 7(5), e06910 (2021c)

    Google Scholar 

  • Jhangeer, A., Faridi, W.A., Asjad, M.I., Inc, M.: A comparative study about the propagation of water waves with fractional operators. J. Ocean Eng. Sci. (2022). https://doi.org/10.1016/j.joes.2022.02.010.(inpress)

    Article  Google Scholar 

  • Jumarie, G.: Modified Riemann-Liouville derivative and fractional Taylor series of nondifferentiable functions further results. Comput. Math. Appl. 51(9–10), 1367–1376 (2006)

    MathSciNet  MATH  Google Scholar 

  • Khalid, A., Rehan, A., Nisar, K.S., Osman, M.S.: Splines solutions of boundary value problems that arises in sculpturing electrical process of motors with two rotating mechanism circuit. Phys. Scr. 96(10), 104001 (2021)

    ADS  Google Scholar 

  • Khalil, R., Al Horani, M., Yousef, A., Sababheh, M.: A new definition of fractional derivative. J. Comput. Appl. Math. 264, 65–70 (2014)

    MathSciNet  MATH  Google Scholar 

  • Khan, K., Akbar, M.A.: Exact and solitary wave solutions for the Tzitzeica–Dodd–Bullough and the modified KdV-Zakharov-Kuznetsov equations using the modified simple equation method. Ain Shams Eng. J. 4(4), 903–909 (2013)

    Google Scholar 

  • Khater, M.M.A., Jhangeer, A., Rezazadeh, H., Akinyemi, L., Akbar, M.A., Inc, M., Ahmad, H.: New kinds of analytical solitary wave solutions for ionic currents on microtubules equation via two different techniques. Opt. Quant. Electron. 53, 609 (2021)

    Google Scholar 

  • Khodadad, F.S., Mirhosseini-Alizamini, S.M., Günay, B., Akinyemi, L., Rezazadeh, H., Inc, M.: Abundant optical solitons to the Sasa-Satsuma higher-order nonlinear Schrödinger equation. Opt. Quant. Electron. 53, 702 (2021)

    Google Scholar 

  • Korkmaz, A., Hepson, O.E., Hosseini, K., Rezazadeh, H., Eslami, M.: Sine-Gordon expansion method for exact solutions to conformable time fractional equations in RLW-class. J. King Saud Univ. Sci. 32(1), 567–574 (2020)

    Google Scholar 

  • Kumar, D., Hosseini, K., Samadani, F.: The sine-Gordon expansion method to look for the traveling wave solutions of the Tzitzéica type equations in nonlinear optics. Optik 149, 439–446 (2017)

    ADS  Google Scholar 

  • Kumar, S., Dhiman, S.K., Baleanu, D., Osman, M.S., Wazwaz, A.M.: Lie symmetries, closed-form solutions, and various dynamical profiles of solitons for the variable coefficient (2+1)-dimensional KP equations. Symmetry 14, 597 (2022)

    Google Scholar 

  • Li, C., Guo, Q.: On the solutions of the space-time fractional coupled Jaulent-Miodek equation associated with energy-dependent Schrödinger potential. Appl. Math. Lett. 121, 107517 (2021)

    MATH  Google Scholar 

  • Liu, J.G., Zhu, W.H., Osman, M.S., Ma, W.X.: An explicit plethora of different classes of interactive lump solutions for an extension form of 3D-Jimbo-Miwa model. Eur. Phys. J. Plus 135, 412 (2020)

    Google Scholar 

  • Liu, H.Z., Zhu, G.Q.: Comment on “the solitons and periodic travelling wave solutions for Dodd-Bullough-Mikhailov and Tzitzeica-Dodd-Bullough equations in quantum field theory”, Optik 168, 807–816”. Optik, 203, 163870 (2018)

  • Mamun, A.A., Shahen, N.H.M., Ananna, S.N., Asaduzzaman, M.: Solitary and periodic wave solutions to the family of new 3D fractional WBBM equations in mathematical physics. Heliyon 7(7), e07483 (2021)

    Google Scholar 

  • Miller, K.S., Ross, B.: An introduction to the fractional calculus and fractional differential equations. Wiley (1993)

    MATH  Google Scholar 

  • Nisar, K.S., Ilhan, O.A., Manafian, J., Shahriari, M., Soybaş, D.: Analytical behavior of the fractional Bogoyavlenskii equations with conformable derivative using two distinct reliable methods. Results Phys. 22, 103975 (2021)

    Google Scholar 

  • Nisar, K.S., Ciancio, A., Ali, K.K., Osman, M.S., Cattani, C., Baleanu, D., Zafar, A., Raheel, M., Azeem, M.: On beta-time fractional biological population model with abundant solitary wave structures. Alex. Eng. J. 61(3), 1996–2008 (2022)

    Google Scholar 

  • Park, C., Khater, M.M., Attia, R.A., Alharbi, W., Alodhaibi, S.S.: An explicit plethora of solution for the fractional nonlinear model of the low-pass electrical transmission lines via Atangana-Baleanu derivative operator. Alex. Eng. J. 59(3), 1205–1214 (2020)

    Google Scholar 

  • Raza, N., Rafiq, M.H., Kaplan, M., Kumar, S., Chu, Y.M.: The unified method for abundant soliton solutions of local time fractional nonlinear evolution equations. Results Phys. 22, 103979 (2021)

    Google Scholar 

  • Roy, R., Akbar, M.A., Seadawy, A.R., Baleanu, D.: Search for adequate closed form wave solutions to space-time fractional nonlinear equations. Partial Differ. Equ. Appl. Math. 3, 100025 (2021)

    Google Scholar 

  • Scherer, R., Kalla, S.L., Tang, Y., Huang, J.: The Grünwald-Letnikov method for fractional differential equations. Comput. Math. Appl. 62(3), 902–917 (2011)

    MathSciNet  MATH  Google Scholar 

  • Scott, A.C., Chu, F.Y.F., McLaughlin, D.W.: The soliton: a new concept in applied science. Proc. IEEE 61(10), 1443–1483 (1973)

    ADS  MathSciNet  Google Scholar 

  • Siddique, I., Jaradat, M.M.M., Zafar, A., Mehdi, K.B., Osman, M.S.: Exact traveling wave solutions for two prolific conformable M-Fractional differential equations via three diverse approaches. Results Phys. 28, 104557 (2021)

    Google Scholar 

  • Tariq, K.U., Tala-Tebue, E., Rezazadeh, H., Younis, M., Bekir, A., Chu, Y.M.: Construction of new exact solutions of the resonant fractional NLS equation with the extended Fan sub-equation method. J. King Saud Univ. Sci. 33(8), 101643 (2021)

    Google Scholar 

  • Tarla, S., Ali, K.K., Sun, T.C., Yilmazer, R., Osman, M.S.: Nonlinear pulse propagation for novel optical solitons modeled by Fokas system in monomode optical fibers. Results Phys. 36, 105381 (2022)

    Google Scholar 

  • Wang, K.J.: On the new exact traveling wave solutions of the time-space fractional strain wave equation in microstructured solids via the variational method. Commun. Theor. Phys. 73(4), 045001 (2021)

    ADS  MathSciNet  Google Scholar 

  • Wazwaz, A.M.: The tanh method: solitons and periodic solutions for the Dodd–Bullough–Mikhailov and the Tzitzeica–Dodd–Bullough equations. Chaos Solitons Fractals 25(1), 55–63 (2005)

    ADS  MathSciNet  MATH  Google Scholar 

  • Wazwaz, A.M.: The tanh method for travelling wave solutions to the Zhiber-Shabat equation and other related equations. Commun. Nonlinear Sci. Numer. Simul. 13(3), 584–592 (2008)

    ADS  MathSciNet  MATH  Google Scholar 

  • Yepez-Martinez, H., Gómez-Aguilar, J.F.: Optical solitons solution of resonance nonlinear Schrödinger type equation with Atangana’s-conformable derivative using sub-equation method. Waves Random Complex Media 31(3), 573–596 (2021)

    ADS  MathSciNet  Google Scholar 

  • Yue, C., Elmoasry, A., Khater, M.M.A., Osman, M.S., Attia, R.A.M., Lu, D., Elazab, N.S.: On complex wave structures related to the nonlinear long-short wave interaction system: analytical and numerical techniques. AIP Adv. 10, 045212 (2020)

    ADS  Google Scholar 

  • Yue, C., Lu, D., Khater, M.: Abundant wave accurate analytical solutions of the fractional nonlinear Hirota–Satsuma–Shallow water wave equation. Fluids 6(7), 235 (2021)

    ADS  Google Scholar 

  • Zafar, A., Raheel, M., Zafar, M.Q., Nisar, K.S., Osman, M.S., Mohamed, R.N., Elfasakhany, A.: Dynamics of different nonlinearities to the perturbed nonlinear Schrödinger equation via solitary wave solutions with numerical simulation. Fract. Fract. 5, 213 (2021a)

    Google Scholar 

  • Zafar, A., Rezazadeh, H., Reazzaq, W., Bekir, A.: The simplest equation approach for solving nonlinear Tzitzéica type equations in nonlinear optics. Modern Phys. Lett. B 35(07), 2150132 (2021b)

    ADS  Google Scholar 

  • Zhou, J., Zhou, R., Zhu, S.: Peakon, rational function and periodic solutions for Tzitzeica–Dodd–Bullough type equations. Chaos Solitons Fractals 141, 110419 (2020)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the anonymous referees for their insightful comments and suggestions to improve the article.

Funding

This work is done under financial support from the Ministry of Higher Education Malaysia (MoHE) for the Fundamental Research Grant Scheme, Acct No: FRGS/1/2021/STG06/USM/02/9 and the authors gratefully acknowledge this support.

Author information

Authors and Affiliations

Authors

Contributions

MAA: Conceptualization, Formal analysis, Writing-original draft, Investigation, Resources, Validation, Data curation. FAA: Supervision, Project administration, Funding acquisition. MMH: Visualization, Writing-review editing, Software, Methodology.

Corresponding author

Correspondence to M. Ali Akbar.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests. All the authors with the consultation of each other completed this research and drafted the manuscript together. All authors have read and approved the final manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akbar, M., Abdullah, F.A. & Haque, M. Soliton solutions and fractional-order effect on solitons to the nonlinear optics model. Opt Quant Electron 54, 461 (2022). https://doi.org/10.1007/s11082-022-03839-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-022-03839-w

Keywords

Navigation