Skip to main content
Log in

Optical absorption engineering in two-dimensional quantum rings: design and optimization for FIR to MIR detection applications

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

In this work, we present the new photodetector based on snowflake quantum rings (QRs) structure utilizing a two-dimensional tight-binding model. Optical absorption has calculated and compared with different usual geometries of rectangular, triangular and circular QRs. There are narrow dominant peaks in the absorption spectrum with a low FHWM of 15 meV in the range of 50 meV in the far-infrared (FIR) regime to 300 meV in the mid-infrared (FIR) regime. The two-dimensional confining potential for Koch shaped quantum ring had been described in previous work was inserted in the tight-binding method and probability density of nine lowest electron energy states and absorption have calculated for the first time. Using these results, some properties of QRs were predicted and their validity was examined and displayed further. For a Koch shape quantum ring, there is fine displacement about 3 meV in absorption peak in long-wavelength infrared regime with changing iteration number that can be used for fine-tuning of the absorption spectrum. Also, a circular ring with minimal energy states has absorption peaks with an average full width at half maximum of 12.5 meV that can be tuned with the resolution of 13 meV in the FIR regime. These results are more applicable for an experimentalist to design a new photodetector with a narrower sharp peak for applications like night-vision, a thermal detector, and total IR absorbers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

All data that support the findings of this study are included within the article.

References

  • Adachia, S., GaAs, AlAs, AlxGa1−xAs: Material parameters for use in research and device applications. J. Appl. Phys. 58(1) (1985)

    Article  ADS  Google Scholar 

  • Assuncao, T.F., Lyra, M.L., de Moura, F.A.B.F., Dominguez-Adame, F.: Coherent electronic dynamics and absorption spectra in an one-dimensional model with long-range correlated off-diagonal disorder. Phys. Lett. A 375, 1048 (2011)

    Article  ADS  Google Scholar 

  • Baghramyan, H.M., Barseghyan, M.G., Kirakosyan, A.A., Restrepo, R.L., Mora-Ramos, M.E., Duque, C.A.: J. Lumin. 676, 145 (2014)

    Google Scholar 

  • Bagraev, N.T., Galkin, N.G., Gehlhoff, W., Klyachkin, L.E., Malyarenko, A.M.: J. Phys.: Condens. Matter 20, 164202 (2008)

    ADS  Google Scholar 

  • Barticevic, Z., Pacheco, M., Latge, A.: Quantum rings under magnetic fields: electronic and optical properties. Phys. Rev. B 62, 6963 (2000)

    Article  ADS  Google Scholar 

  • Bayer, M., Korkusinski, M., Hawrylak, P., Gutbrod, T., Michel, M., Forchel, A.: Optical detection of the Aharonov–Bohm effect on a charged particle in a nanoscale quantum ring. Phys. Rev. Lett. 90, 186801 (2003)

    Article  ADS  Google Scholar 

  • Bhowmick, S., Huang, G., Guo, W., Lee, C.S., Bhattacharya, P., Ariyawansa, G., Perera, A.G.U.: Appl. Phys. Lett. 96, 231103 (2010)

    Article  ADS  Google Scholar 

  • Billaha, A., Das, M.K.: Influence of doping on the performance of GaAs/AlGaAs QWIP for long wavelength applications. Opto-Electron. Rev. 24, 25–33 (2016)

    Article  ADS  Google Scholar 

  • Bruno-Alfonso, A., Latgé, A.: Quantum rings of arbitrary shape and non-uniform width in a threading magnetic field. Phys. Rev. B 77, 205303 (2008)

    Article  ADS  Google Scholar 

  • Chen, G.-Y., Chen, Y.-N., Chuu, D.-S.: The Aharonov–Bohm effect in concentric quantum double rings. Solid State Commun. 143, 515–518 (2007)

    Article  ADS  Google Scholar 

  • Cheng, Y., Luo, X., Song, J., Liow, T.-Y., Lo, G.-Q., Cao, Y., et al.: Passively mode-locked III-V/silicon laser with continuous-wave optical injection. Opt. Express 23, 6392–6399 (2015)

    Article  ADS  Google Scholar 

  • Dai, J.H., Lee, J.H., Lin, Y.L., Lee, S.C.I.: Jpn. J. Appl. Phys. 47, 2924 (2008)

    Article  ADS  Google Scholar 

  • Dias da Silva, L.G.G.V., Ulloa, S.E., Shahbazyan, T.V.: Impurity effects in the optical absorption of quantum rings. Physica E 32, 37–40 (2006)

    Article  ADS  Google Scholar 

  • Dutta, P., Maiti, S.K., Karmakar, S.N.: Quantum transport in an array of mesoscopic rings: effect of interface geometry. Solid State Commun. 150, 1056–1061 (2010)

    Article  ADS  Google Scholar 

  • Emperador, A., Barranco, M., Lipparini, E., Pi, M., Serra, L.: Phys. Rev. B 59 (1999)

  • Mohammad ghasemi, F., Ahmadi, V., Mobini, A.: Design and analysis of enhanced infrared photodetector based on plasmonic antenna with gold back-reflector. In: 2016 24th Iranian Conference on Electrical Engineering (ICEE), Shiraz, pp. 1170–1174. https://doi.org/10.1109/IranianCEE.2016.7585698 (2016)

  • Garcia, J. M., Granados, D., Silveira, J. P., Briones, F.: Microelectron. J. 35 (2004)

  • Ghafari, S., Mobini, A., Solimani, M.: Nano-scale planar photodetector based on ring form MQWs for FIR regime. JOSA B 36(4), 897–900 (2019)

    Article  ADS  Google Scholar 

  • Govorov, A.O., Kalameitsev, A.V., Warburton, R., Karrai, K., Ulloa, S.E.: Physica E 13, 297 (2002)

    Article  ADS  Google Scholar 

  • Grochol, M., Zimmermann, R.: Noncircular semiconductor nanorings of types I and II: emission kinetics in the excitonic Aharonov–Bohm effect. Phys. Rev. B 76, 195326 (2007)

    Article  ADS  Google Scholar 

  • He, J.H., Chen, C.Y., Ho, C.H., Wang, C.W., Chen, M.J., Chen, L.J.: “Growth and structural characterization of SiGe nanorings. J. Phys. Chem. C 114, 5727 (2010)

    Article  Google Scholar 

  • Hedin, E.R., Joe, Y.S.: Sensitive spin-polarization effects in an Aharonov–Bohm double quantum dot ring. J. Appl. Phys. 110, 026107 (2011)

    Article  ADS  Google Scholar 

  • Kong, X.Y., Ding, Y., Yang, R., Wang, Z. L.: Science 303 (2004)

  • Lee, J.H., Mwang, Zh., Abuwaar, Z.Y., Strom, N.W., Salamo, G.J.: Evolution between self-assembled single and double ring-like nanostructures. Nanotechnology 17, 3973–3976 (2006)

    Article  ADS  Google Scholar 

  • Li, B., Peeters, F.M.: Tunable optical Aharonov–Bohm effect in a semiconductor quantum ring. Phys. Rev. B 83, 115448 (2011)

    Article  ADS  Google Scholar 

  • Li, X., Yu, X., Sun, Z., Yan, Z., Sun, B., Cheng, Y., et al.: High-power graphene mode-locked Tm/Ho co-doped fiber laser with evanescent field interaction. Sci. Rep. 5, 16624 (2015)

    Article  ADS  Google Scholar 

  • Ling, H.S., Wang, S.Y., Lee, C.P., Lo, M.C.: J. Appl. Phys. 105, 034504 (2009)

    Article  ADS  Google Scholar 

  • Lorke, A., Luyken, R.J., Govorov, A.O., Kotthaus, J.P.: Phys. Rev. Lett. 84 (2000).

  • Lu, J.-H., Wu, K.-J., Hsieh, K.-J., Kuan, C.-H., Feng, J.-Y., Lay, T.-S., et al.: A superlattice infrared photodetector integrated with multiple quantum wells to improve the performance. IEEE J. Quantum Electron. 43, 72–77 (2007)

    Article  ADS  Google Scholar 

  • Meng, B., Tao, J., HuiLi, X., Quan Zeng, Y., Wu, S., Jie Wang, Q.: Tunable single-mode slot waveguide quantum cascade lasers. Appl. Phys. Lett. 104 (2014)

  • Mikhailov, I.D., Garcıa, L.F., Marın, J.H.: Effect of wetting layer on electron–hole correlation in quantum discs and rings. J. Phys. Condens Matter 18, 9493–9507 (2006)

    Article  ADS  Google Scholar 

  • Mobini, A., Ahmadi, V.: Design and analysis of multicolor QDIP based on metallic nanoslits array. IEEE Photonics Technol. Lett. 26(12), 1231–1234 (2014)

    Article  ADS  Google Scholar 

  • Mobini, A., Solaimani, M.: A quantum rings based on multiple quantum wells for 1.2–2.8 THz detection. Physica E: Low-Dimens. Syst. Nanostruct. 101, 162–166 (2018)

    Article  ADS  Google Scholar 

  • Nasri, D.: Electronic and optical properties of eccentric quantum ring under parallel magnetic field. Physica B 615, 413077 (2021)

    Article  Google Scholar 

  • Nita, M., Marinescu, D.C., Manolescu, A., Ostahie, B., Gudmundsson, V.: Physica E 46, 12 (2012)

    Article  ADS  Google Scholar 

  • Nunnenkamp, A., Rey, A.M., Burnett, K.: Generation of macroscopic superposition states in ring superlattices. Phys. Rev. A 77, 023622 (2008)

    Article  ADS  Google Scholar 

  • Palaferri, D., Todorov, Y., Bigioli, A., Mottaghizadeh, A., Gacemi, D., Calabrese, A., et al.: Room-temperature nine-µm-wavelength photodetectors and GHz-frequency heterodyne receivers. Nature 556, 85 (2018)

    Article  ADS  Google Scholar 

  • Solaimani, M., Mobini, A.: Investigation on Rashba spin-orbit interactions in two dimension quantum array for thermal imaging applications. J. Opt. 22(8), 085001 (2020)

    Article  ADS  Google Scholar 

  • Solaimani, M., Izadifard, M., Arabshahi, H., Sarkardei, M.R.: J. Lumin. 134, 699 (2013a)

    Article  Google Scholar 

  • Solaimani, M., Izadifard, M., Arabshahi, H., Sarkardei, M.R.: J. Lumin. 134, 699 (2013b)

    Article  Google Scholar 

  • Solaimani, M., Lavaei, L., Ghalandari, M.: Intersubband optical properties of a two electron GaN/AlN constant total effective radius multi-shells quantum rings. Superlattices Microstruct. 82, 1–10 (2015)

    Article  ADS  Google Scholar 

  • Splettstoesser, J., Governale, M.E., Zulicke, U.: Phys. Rev. B 68, 165341 (2003)

    Article  ADS  Google Scholar 

  • Strom, N.W., Wang, Zh., Lee, J.H., AbuWaar, Z.Y., Mazur, Y., Salamo, G.J.: Nanoscale Res. Lett. 2 (2007)

  • Szafran, B., Bednarek, S., Dudziak, M.: Electron correlations in charge coupled vertically stacked quantum rings. Phys. Rev. B 75, 235323 (2007)

    Article  ADS  Google Scholar 

  • Tan, W.-C., Inkson, J.C.: Landau quantization and the Aharonov–Bohm effect in a two-dimensional ring. Phys. Rev. B 53, 6947 (1996)

    Article  ADS  Google Scholar 

  • Tomita, I., Suzuki, A.: Geometrical effect on the electron escape rate in a mesoscopic ring with an Aharonov–Bohm magnetic flux. Phys. Rev. B 53, 9536 (1996)

    Article  ADS  Google Scholar 

  • Wang, X.F., Vasilopoulos, P.: Physica E 39 (2007)

  • Warburton, R.J., Schaflein, C., Haft, D., Blickel, F., Lorke, A., Karrai, K., Garcia, J.M., Schoenfeld, W., Petroff, P.M.: Nature (2000)

  • Zhu, S.-L.: Berry phase and Aharonov-Bohm effect in one-dimensional mesoscopic ring with an adiabatic rotating potential. Solid State Commun. 113, 233–237 (2000)

    Article  ADS  Google Scholar 

  • Zozulenko, I.V., Maao, F.A., Hiis Hauge, E.: Quantum magnetotransport in a mesoscopic antidot lattice. Phys. Rev. B 51(11), 7058 (1995)

    Article  ADS  Google Scholar 

Download references

Funding

There is no funding for this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alireza Mobini.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Solaimani, M., Mobini, A. & Kenari, A.R. Optical absorption engineering in two-dimensional quantum rings: design and optimization for FIR to MIR detection applications. Opt Quant Electron 54, 463 (2022). https://doi.org/10.1007/s11082-022-03838-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-022-03838-x

Keywords

Navigation