Skip to main content

Advertisement

Log in

A review on terahertz non-destructive applications for wound and diabetic foot screening

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

By advances in the treatments of diabetes in the last few decades, diabetic foot problems, wounds and ulcerations continue to be a major global burden for patients and the health care systems. For monitoring wound healing, it is essential to use an accurate wound measurement method, which is able to detect small changes in the wound size. The terahertz (THz) radiation was discovered to cover the gap of the frequency range between the mid-infrared (IR) and the microwave in the electromagnetic spectrum. THz radiation as safe radiation is increasingly being used in medical, sensing, communication applications since its generation and detection technology appeared. Due to its non-ionizing non-destructive characteristic, it is generally considered to be harmless, and safe to the body tissues. Based on the mentioned characteristics, there has been an increasing interest in terahertz imaging and spectroscopy for biomedical applications. The recent development of THz technology has stimulated interest in studying biological effects associated with this frequency range and its special applications in medical diagnosis as valuable types of basic and applied research areas. Here we aim to review various fundamentals related to THz, and physical aspects including its interaction mechanisms with skin tissue, generation, detection and specifications, THz imaging, spectroscopy, and finally THz application in wound and repair monitoring and diabetic foot screening.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Afroozeh, A., Innate, K., Ali, J., Yupapin, P et al.: THz frequency generation using Gaussian pulse for biomedical applications. Opt. Int. J. Light Electron Opt. 124(5), 416–419 (2012)

  • Alexiadou, K., Doupis, K.: Management of diabetic foot ulcers. Diabetes Ther. 3, 4 (2012)

    Article  Google Scholar 

  • American Diabetes Association: Diagnosis and classification of diabetes mellitus. Diabetes Care S43, 29 (2006)

    Google Scholar 

  • Amini, T., Jahangiri, F., Ameri, Z., Hemmatian, M.A.: A Review of feasible applications of THz waves in medical diagnostics and treatments. J. Lasers Med. Sci. 12, e92 (2021)

    Article  Google Scholar 

  • Arbab, M.H., Winebrenner, D.P., Dickey, C.T., Chen, A., Klein, M.B., Mourad, P.D.: Terahertz spectroscopy for the assessment of burn injuries in-vivo. J. Biomed. Opt. 18, 077004 (2013)

    Article  Google Scholar 

  • Armstrong, D.G., Boulton, A.J.M., Bus, S.A.: Diabetic foot ulcers and their recurrence. N. Engl. J. Med. 376, 2367–2375 (2017)

    Article  Google Scholar 

  • Asha, M.L., Jasti, S., Rajarathnam, B.N.: Terahertz pulse imaging: a novel imaging technique in dentistry. World J. Pharm. Res. 4(10), 2795–2802 (2015)

    Google Scholar 

  • Basyouni Tayel, M., Abouelnaga, T.G., Fereg, A.: UWB high gain antenna array for SAR based breast cancer detection system. In: 5th international conference on electrical and electronic engineering (ICEEE), (2018)

  • Benson, H.A.E., Krishnan, G., Edwards, J., Liew, Y.M., Wallace, V.P.: Enhanced skin permeation and hydration by magnetic field array: preliminary in-vitro and in-vivo assessment. J. Pharm. Pharmacol. 62(6), 696–701 (2010)

    Article  Google Scholar 

  • Berry, E., Fitzgerald, A.J., Zinov’ev, N.N., et al.: Optical properties of tissue measured using terahertz pulsed imaging. Phys. Med. Imaging 5030, 459–470 (2003)

    Google Scholar 

  • Bowman, T., El-Shenawee, M., Campbell, L.K.: Terahertz transmission vs reflection imaging and model-based characterization for excised breast carcinomas. Biomed. Opt. Express 7(9), 3756–3783 (2016)

    Article  Google Scholar 

  • Bowman, T., Chavez, T., Khan, K., Wu, J., Chakraborty, A., Rajaram, N., Bailey, K., El-Shenawee, M.O.: Pulsed terahertz imaging of breast cancer in freshly excised murine tumors. J. Biomed. Opt. 23(2), 026004 (2018)

    Article  ADS  Google Scholar 

  • Brun, M.A., Formanek, F., Yasuda, A., Sekine, M., Ando, N., Eishii, Y.: Terahertz imaging applied to cancer diagnosis. Phys. Med. Biol. 55, 4615–4623 (2010)

    Article  Google Scholar 

  • Cano-Garcia, H., Saha, S., Sotiriou, I., Kosmas, P., Gouzouasis, I., Kallos, E.: Millimeter-wave sensing of diabetes-relevant glucose concentration changes in pigs. J. Infrared Millimeter Terahertz Waves 39(8), 761–72 (2018)

    Article  Google Scholar 

  • Cardoso, G.G.H., Rojas-Landeros, S.C., Alfaro, M.: Development of a method of evaluation of diabetic foot deterioration by terahertz spectroscopic image. In: IEEE. 978-1, (2017)

  • Cardoso, G.G.H., Rojas-Landeros, S.C., Alfaro-Gomez, M., Hernandez-Serrano, A.I., et al.: Terahertz imaging for early screening of diabetic foot syndrome: a proof of concept. Sci. Rep. 7, 42124 (2018a)

    Article  Google Scholar 

  • Cardoso, G.G.H., Alfaro, M., Landeros, C., Landeros, C., Castro-Camus, E.: Three-color spectroscopic terahertz images as an indicator for diabetic foot syndrome deterioration. In: IEEE,78-1-5386-3809-5, (2018b)

  • Chan, W.L.: Imaging with terahertz radiations. Rep. Prog. Phys. 70, 1325–1379 (2007)

    Article  ADS  Google Scholar 

  • Cherkasova, O.P., Serdyukov, D.S., Ratushnyak, A.S., Nemova, E.F., Kozlov, E.N., Shidlovskii, Y.V., Zaytsev, K.I., Tuchin, V.V.: Effects of terahertz radiation on living cells: a review. Opt. Spectrosc. 128(6), 855–866 (2020)

    Article  ADS  Google Scholar 

  • Chernomyrdin, N.V., Kucheryavenko, A.S., Kolontaeva, G.S., Katyba, G.M., Dolganova, I.N., Karalkin, P.A., Ponomarev, D.S., Kurlov, V.N., Reshetov, I.V., Skorobogatiy, M., Tuchin, V.V., Zaytsev, K.I.: Reflection-mode continuous-wave 0.15λ- resolution terahertz solid immersion microscopy of soft biological tissues. Appl. Phys. Lett. 113, 111102 (2018)

    Article  ADS  Google Scholar 

  • Cooper, K.B., Dengler, R.J., Llombart, N.: THz imaging radar for standoff personnel screening. IEEE Trans. Terahertz Sci. Technol. 1(1), 169–182 (2011)

    Article  ADS  Google Scholar 

  • Dolganova, I.N., Zaytsev, K.I., Yurchen, S.O.: The role of scattering in quasi-ordered structures for terahertz imaging: local order can increase an image quality. IEEE Trans. Terahertz Sci. Technol. 8(4), 403–409 (2018)

    Article  ADS  Google Scholar 

  • Federici, J.F.: Review of moisture and liquid detection and mapping using terahertz imaging. J. Infrared Millimeter Terahertz Waves 33, 97–126 (2012)

    Article  Google Scholar 

  • Geetharamani, G., Aathmanesan, T.: Metamaterial inspired THz antenna for breast cancer detection. SN Appl. Sci. 1, 595 (2019)

    Article  Google Scholar 

  • Grootendorst, M.R., Fitzgerald, A.J., de Koning, S.G.B., Santaolalla, A., Portieri, A., Van Hemelrijck, M., Young, M.R., Owen, J., Cariati, M., Pepper, M., Wallace, V.P., Pinder, S.E., Purushotham, A.: Use of a handheld terahertz pulsed imaging device to differentiate benign and malignant breast tissue. Biomed. Opt. Express 8(6), 2932–2945 (2017)

    Article  Google Scholar 

  • Guilmette, L.: The History of Maxwell's Equations, Writing Across the Curriculum. Sacred Heart University (2012)

  • Janke, C., Först, M., Nagel, M., Kurz, H., Bartels, A.: Asynchronous optical sampling for high speed characterization of integrated resonant terahertz sensors. Opt. Lett. 30(11), 1405–1407 (2005)

    Article  ADS  Google Scholar 

  • Jha, M., Samantaray, D., Bhattacharyya, S.: A THz antenna with sandwiched metasurface for quadband application. Opt. Commun. 493, 126995 (2021)

    Article  Google Scholar 

  • Jørgensen, L.B., Halekoh, U., Jemece, G.B.E., et al.: Monitoring wound healing of diabetic foot ulcers using two-dimensional and three-dimensional wound measurement techniques: a prospective cohort study. Adv. Wound Care 9(10), 553–563 (2020)

    Article  Google Scholar 

  • Kan, W.C.: Terahertz pulsed imaging of knee cartilage. Biomed. Opt. Express 1(3), 967–974 (2010)

    Article  MathSciNet  Google Scholar 

  • Kashania, H.A., Kuzikova, A., Demchenko, P., Senyuk, A., Svechkova, A., Khamid, A., Zakharenko, A., Khodzitskiy, M.: Gastric cancer diagnosis using terahertz imaging. Majlesi J. Multimed. Process. 4(4), 1–7 (2015)

    Google Scholar 

  • Kim, S.M., Hatami, F., Kurian, A.W., Ford, J., Harris, J.S., Scalari, G., Giovannini, M., Hoyler, N., Faist, J., Harris, G.: Bio-medical imaging with a terahertz quantum cascade laser. In: Proc of SPIE, vol. 6095 (2006)

  • Kim, K., Park, J., Jin Jo, S., Jung, S., et al.: High-power femtosecond-terahertz pulse induces a wound response in mouse skin. Sci. Rep. 3, 2296 (2013)

    Article  Google Scholar 

  • Krozer, V., Löffler, T., Dall, J., Kusk, A.: THz imaging systems with aperture synthesis techniques. IEEE Trans. Microw. Theory Tech. 58(7), 2027–2039 (2010)

    Article  ADS  Google Scholar 

  • Kwang-Hee, I., Kim, S.K., Cho, Y.T., Woo, Y.D., Chiou, C.P.: THz-TDS techniques of thickness measurements in thin shim stock films and composite materials. Appl. Sci. 11, 8889 (2021)

    Article  Google Scholar 

  • Lee, Y.: Principles of Terahertz Science and Technology. (Lecture Notes in Physics), 3rd edn. Springer, New York (2009)

    Google Scholar 

  • Lereu, A.L., Passian, A., Duma, Ph.: Near field optical microscopy: a brief review. Int. J. Nanotechnol. 9, 3–7 (2012)

    Article  Google Scholar 

  • Li, J., Yao, Y., Jiang, L., Li, S., Yi, Z., Chen, X., Tian, Z., Zhang, W.: Time-domain terahertz optoacoustics: manipulable water sensing and dampening. Adv. Photonics 3(2), 026003–026011 (2021)

    Article  ADS  Google Scholar 

  • Lin, K., Hongwei, L., Nan, Z., Yang, W., Keat, S.M., Soon, T.N.: Diabetes chronicle wound analysis using terahertz time domain spectroscopy and imaging technology. Int. J. Opt. Photonic Eng. 4, 021 (2019)

    Google Scholar 

  • Lindley-Hatcher, H., Stantchev, R.I., Chen, X., Hernandez-Serrano, A.I., Hardwicke, J., Pickwell-MacPherson, E.: Real time THz imaging—opportunities and challenges for skin cancer detection. Appl. Phys. Lett. 118, 230501 (2021)

    Article  ADS  Google Scholar 

  • Loffler, T.: Terahertz dark-field imaging of biomedical tissue. Opt. Express 9(12), 616–621 (2001)

    Article  ADS  Google Scholar 

  • Loffler, T., Siebert, K.J., Hasegawa, N., Ha, T.: All-optoelectronic terahertz imaging system and examples of their applications. IEE Proc. 95(8), 15765–21582 (2007)

    Article  Google Scholar 

  • Moller, U., Cooke, D.G., Tanaka, K., Jepsen, P.U.: Terahertz reflection spectroscopy of Debye relaxation in polar liquid. J. Opt. Soc. Am. 26(9), A113–A125 (2009)

    Article  Google Scholar 

  • Mueller, E.R.: Terahertz radiation sources for imaging and sensing applications. Photonics Spectra 40(11), 60–69 (2006)

    Google Scholar 

  • Nakajima, S., et al.: Terahertz imaging diagnostics of cancer tissues with a chemometrics technique. Appl. Phys. Lett. 90, 041102 (2007)

    Article  ADS  Google Scholar 

  • Nikitkina, A.I., Bikmulina, P., Gafarova, E.R., Kosheleva, N.V.: Terahertz radiation and the skin: a review. J. Biomed. Opt. 26(4), 043005–043011 (2021)

    Article  ADS  Google Scholar 

  • Owda, A.Y., Owda, M., Rezgui, N.D.: Synthetic aperture radar imaging for burn wounds diagnostics. Sensors 20(3), 847 (2020)

    Article  ADS  Google Scholar 

  • Pallavi, D., Cecil, J., Robert, H.G.: Terahertz endoscopic imaging for colorectal cancer detection: current status and future perspectives. World J. Gastrointest. Endosc. 9(8), 346–358 (2017)

    Article  Google Scholar 

  • Parker, J.S.: Terahertz (THz) Interferometry for Bearing Angle Measurement. Materials Science (2016)

  • Peralta, X.G.: Terahertz spectroscopy of human skin tissue models with different melanin content. Biomed. Opt. Express 10(6), 2942–2955 (2019)

    Article  Google Scholar 

  • Pereira, M.F., Anfertev, V., Shevchenko, Y., Vaks, V.: Giant controllable gigahertz to terahertz nonlinearities in superlattices. Sci. Rep. 10, 15950 (2020)

    Article  ADS  Google Scholar 

  • Pickwell, E., Wallace, V.P.: Biomedical applications of terahertz technology. J. Phys. D Appl. Phys. 39, R301 (2006)

    Article  ADS  Google Scholar 

  • Pospiech, M.: Terahertz Technology an Overview. TU Kaiserslautern Germany (2003)

  • Prince, J.L., Links, J.M.: Medical Imaging Signals and Systems. Chap 1–3, 2nd edn. Pearson publication, New York (2015)

    Google Scholar 

  • Rakic, A.D., Taimre, T., Bertling, K., Lim, Y.L., Dean, P., Valavanis, A., Indjin, D.: Sensing and imaging using laser feedback interferometry with quantum cascade lasers. Appl. Phys. 6, 021320 (2019)

    ADS  Google Scholar 

  • Razeghi, M., Lu, Q.Y., Bandyopadhyay, N., Zhou, W., Heydari, D., Bai, Y., Slivken, S.: Quantum cascade lasers: from tool to product. Opt. Express 23(7), 8462–8475 (2015)

    Article  ADS  Google Scholar 

  • Reid, C.B., Fitzgerald, A., Reese, G., Goldin, R., et al.: Terahertz pulsed imaging of freshly excised human colonic tissue. Phys. Med. Biol. 56, 4333 (2010a)

    Article  Google Scholar 

  • Reid, C.B., Pickwell-MacPherson, E., Laufer, J.G., Gibson, A.P., Hebden, J.C., Wallace, V.P.: Accuracy and resolution of THz reflection spectroscopy for medical imaging. Phys. Med. Biol. 55(16), 4825–4838 (2010b)

    Article  Google Scholar 

  • Rogalski, A., Sizov, F.: Terahertz detectors and focal plane arrays. Opto Electron. Rev. 19(3), 346–404 (2011)

    Article  ADS  Google Scholar 

  • Rohlfs K., Wilson, T.L.: Tools of radio astronomy. Chapter 2: Electromagnetic Wave Propagation Fundamentals. Springer-Verlag, Berlin Heidelberg. ISBN: 9783540403876 (2013)

  • Rostami, A., Rasooli, H., Baghban, H.: Terahertz Technology, Fundamentals and Applications. Lecture Notes in Electrical Engineering, p. 77. Springer-Verlag, Berlin Heidelberg (2011)

    Google Scholar 

  • Rosyid, N.: Etiology, pathophysiology, diagnosis and management of diabetics’ foot ulcer”. Int. J. Res. Med. Sci. 5(10), 4206–4213 (2017)

    Article  Google Scholar 

  • Rothenberg, G.M., Page, J., Stuck, R., et al.: Remote temperature monitoring of the diabetic foot: from research to practice. Fed. Pract. 37(3), 114–123 (2020)

    Google Scholar 

  • Saeedkia, D.: Handbook of terahertz technology for imaging, sensing and communications, Edited by: A volume in Wood. Head Publishing Series in Electronic and Optical Materials and Tomographic Reconstruction, pp. 1821–42 (2013)

  • Sangcheol, K.: Fabrication of Active and Passive Terahertz Structures”, Thesis Master, University of Delaware (2006)

  • Scully, T.: Diabetes in numbers. Nature 485, S2–S3 (2012)

    Article  ADS  Google Scholar 

  • Sethy, P.K., Mishra, P.R., Behera, S.: An introduction to terahertz technology, its history, properties and application. In: International conference on computing and communication (2015)

  • Shah, M., Revis, D., Herrick, S., Baillie, R., Thorgeirson, S., Ferguson, M., Roberts, A.: Role of elevated plasma transforming growth factor-beta1 levels in wound healing. Am. J. Pathol. 154, 1115–1124 (1999)

    Article  Google Scholar 

  • Shik, L.Y.: Principles of Terahertz Science and Technology. Springer, New York (2009)

    Google Scholar 

  • Shiraga, K., Ogawa, Y., Suzuki, T., et al.: Characterization of dielectric responses of human cancer cells in the terahertz region. J. Infrared Millimeter Terahertz Waves 35, 493–502 (2014)

    Article  Google Scholar 

  • Shumyatsky, P., Alfano, R.: Terahertz sources. J. Biomed. Opt. 16(3), 033001 (2011)

    Article  ADS  Google Scholar 

  • Siang, C., Zhiwen, J.L.: Wound assessment, imaging and monitoring systems in diabetic foot ulcers: a systematic review. Int. Wound J. 17, 1909–1923 (2020)

    Article  Google Scholar 

  • Siebert, K.J.: All-optoelectronic continuous wave THz imaging for biomedical applications. Phys. Med. Biol. 47, 3743–3748 (2002)

    Article  Google Scholar 

  • Siegel, P.H.: Terahertz technology in biology and medicine”. IEEE Trans. Microw. Theory Tech. 52, 2438 (2004)

    Article  ADS  Google Scholar 

  • Sizov, F.: THz radiation sensor. Opto Electron. Rev. 18, 10–36 (2010a)

    ADS  Google Scholar 

  • Sizov, F.: THz detectors. Prog. Quant. Electron. 34, 278–347 (2010b)

    Article  ADS  Google Scholar 

  • Sizov, F.F.: Brief history of THz and IR technologies. SPQEO 22(1), 67–79 (2019)

    Article  Google Scholar 

  • Smolyanskaya, O.A., Chernomyrdin, N.V., Konovko, A.A., Zaytsev, K.I., et al.: Terahertz biophotonics as a tool for studies of dielectric and spectral properties of biological tissues and liquids. Prog. Quantum Electron. 62, 1–77 (2018a)

    Article  ADS  Google Scholar 

  • Smolyanskaya, O.A., Schelkanova, I.J., Kulya, M.S., Odlyanitskiy, E.L., Goryachev, I.S., Tcypkin, A.N., Grachev, Y.V., Toropova, Y.G., Tuchin, V.V.: Glycerol dehydration of native and diabetic animal tissues studied by THz-TDS and NMR methods. Biomed. Opt. Express 19(3), 1198 (2018b)

    Article  Google Scholar 

  • Smye, S.W., Fitzgerald, A.J., Berry, E., Chamberlain, J.M.: The interaction between terahertz radiation and biological tissue. Phys. Med. Biol. 46, R101–R112 (2001)

    Article  Google Scholar 

  • Sun, Y., Yiu Sy, M., Wang, Y.X., Ahuja, A.T., et al.: A promising diagnostic method: terahertz pulsed imaging and spectroscopy. World J. Radiol. 3(3), 55–65 (2011)

    Article  Google Scholar 

  • Tachizaki, T., Sakaguchi, R., Terada, S., Kamei, K., Hirori, H.: Terahertz pulse-altered gene networks in human induced pluripotent stem cells. Opt. Lett. 45(21), 6078–6081 (2020)

    Article  ADS  Google Scholar 

  • Tambe, V.N., Jadhav, P.S.: Terahertz pulse imaging spectroscopy and pharmaceutical applications-a review. Res. J. Sci. Technol. 12(4), 317–322 (2020)

    Article  Google Scholar 

  • Tani, M.M., Herrmann, M., Kiyomi Sakai, K.: Generation and detection of terahertz pulsed radiation with photoconductive antennas and its applications to imaging. Meas. Sci. Technol. 13, 1739–1745 (2002)

    Article  ADS  Google Scholar 

  • Taylor, Z.D., Singh, R.S., Culjat, M.O., Suen, J.Y., Grundfest W.S.: THz imaging based on water-concentration contrast. In: Proc. SPIE 6949, terahertz for military and security applications, (2008)

  • Tewari, P., Kealey, C.P., Bennett, D.B., Bajwa, N., Barnett, K.S.: In vivo terahertz imaging of rat skin burns. J. Biomed. Opt. 17, 0405031–0405033 (2012)

    Article  Google Scholar 

  • Thewjitcharoen, Y., Sripatpong, J., Krittiyawong, S., Porramatikul, S., et al.: Changing the patterns of hospitalized diabetic foot ulcer (DFU) over a 5-year period in a multi-disciplinary setting in Thailand. BMC Endocr. Disord. 20, 89 (2020)

    Article  Google Scholar 

  • Thidé, B.: Electromagnetic Field Theory. Upsilon Books, Commune Ab- Uppsala A, Sweden (2014)

  • Tielrooij, K.J., Paparo, D., Piatkowski, L., Bakker, H.J., et al.: Dielectric relaxation dynamics of water in model membranes probed by terahertz spectroscopy. Biophys. J. 97, 2484–2492 (2009)

    Article  ADS  Google Scholar 

  • Vafapour, Z., Keshavarzc, A., Ghahraloud, H.: The potential of terahertz sensing for cancer diagnosis. Heliyon 6(12), e05623 (2020)

    Article  Google Scholar 

  • Valušis, G., Lisauskas, A., Yuan, H., Knap, W., Roskos, H.G.: Roadmap of terahertz imaging. Sensors 21, 4092 (2021)

    Article  ADS  Google Scholar 

  • Wahaia, F., Kasalynas, I., Venckevicius, R., Seliuta, D., Valusis, G., Urbanowicz, A., Molis, G., Carneiro, F., Carvalho, S.C.D., Granja, P.L.: Terahertz absorption and reflection imaging of carcinoma-affected colon tissues embedded in paraffin. J. Mol. Struct. 1107, 214–219 (2016)

    Article  ADS  Google Scholar 

  • Wai, L.C., Deibel, J., Mittleman, D.M.: Imaging with terahertz radiation. Rep. Prog. Phys. 70, 1325–1379 (2007)

    Article  ADS  Google Scholar 

  • Wallace, V.P., Taday, P.F., Fitzgerald, A.J., Woodward, R.M., Cluff, J., Pye, R.J., Arnone, D.D.: Terahertz pulsed imaging and spectroscopy for biomedical and pharmaceutical applications. R. Soc. Chem. 126, 255–263 (2004)

    Google Scholar 

  • Wang, J., Tam, E.W.C., Mak, A.F.T., Lau, R.Y.C.: THz in vivo measurements: the effects of pressure on skin reflectivity. Biomed. Opt. Express 9(12), 6467–6476 (2018)

    Article  Google Scholar 

  • Wang, J., Sun, Q., Stantchev, R.I., Chiu, T.W., Ahuja, A.T., Pickwell-MacPherson, E.: In-vivo terahertz imaging to evaluate scar treatment strategies: silicone gel sheeting. Biomed. Opt. Express 10(7), 3584–3590 (2019)

    Article  Google Scholar 

  • Wang, J., Lindley-Hatcher, H., Chen, X., Pickwell-MacPherson, E.: THz sensing of human skin: a review of skin modeling approaches. Sensors 21(11), 3624 (2021)

    Article  ADS  Google Scholar 

  • Weisenstein, C., Katharina, W.A., Richter, M., Sczech, R., Katrin, B.A., Haring Bolívar, P.: THz detection of biomolecules in aqueous environments—status and perspectives for analysis under physiological conditions and clinical use. J. Infrared Millimeter Terahertz Waves 42, 607–646 (2021)

    Article  Google Scholar 

  • Woodward, R.M., Cole, B.E., Wallace, V.P., Pye, R.J., Arnone, D.D.: Terahertz pulse imaging in reflection geometry of human skin cancer and skin tissue. Phys. Med. Biol. 47, 3853 (2002)

    Article  Google Scholar 

  • Woodward, M.R., Fitzgerald, A.J., Shankar, S., Flanagan, N., Pye, R., Cluff, J., Arnone, D.D.: Terahertz pulse imaging of ex vivo basal cell carcinoma. J. Investig. Dermatol. 120(1), 72–78 (2003)

    Article  Google Scholar 

  • Woolard, D., et al.: Terahertz electronics for chemical and biological warfare agent detection. In: IEEE MTT-S Digest, pp. 925–927 (1999)

  • Yamaguchi, S., Fukushi, Y., Kubota, O., Itsuji, T., Ouchi, T., Yamamoto, S.: Origin and quantification of differences between normal and tumor tissues observed by terahertz spectroscopy. Phys. Med. Biol. 61(18), 6808–6820 (2016)

    Article  Google Scholar 

  • Yang, L., Chan, T., Demare, J., Iwashina, T., Ghahary, A., Scott, P.G., Tredget, E.E.: Healing of burn wounds in transgenic mice overexpressing transforming growth factor-beta1 in the epidermis. Am. J. Pathol. 159, 2147–2157 (2001)

    Article  Google Scholar 

  • Yang, X., Zhao, X., Yang, K., Liu, Y.: Biomedical applications of terahertz spectroscopy and imaging. Trends Biotechnol. 34(10), 810–824 (2016)

    Article  Google Scholar 

  • Yeo, W.G., Nahar, N.K., Hitchcock, C.L.: Real-time THz imaging of human tissue characteristics and cancer margins. In: 38th international conference on infrared, millimeter, and terahertz waves (IRMMW-THz), IEEE, pp. 1–2 (2013)

  • Yeo, W.G., Gurel, O., Hitchcock, C., Hitchcock, C., et al.: Evaluation of cancer tissue morphology via THz spectroscopic imaging: human lung and small intestine malignancies. Infrared Phys. Technol. 97, 411–416 (2019)

    Article  ADS  Google Scholar 

  • Yin, X., Ng, B.W.H., Abbott D.: Terahertz imaging for biomedical applications: pattern recognition. Chapter 2: Terahertz Sources and Detectors, Springer Science & Business Media, ISBN: 978-1-4614-1820-7 (2012)

  • Yu, C., Fan, S., Sun, Y., Pickwell-Macpherson, E.: The potential of terahertz imaging for cancer diagnosis: a review of investigations to date. Quant. Imaging Med. Surg. 2, 33–45 (2012a)

    Google Scholar 

  • Yu, L., Hao, L., Meiqiong, T., Jiaoqi, H., Wei, L., Jinying, D., Xueping, C., Weiling, F., Yang, Z.: The medical application of terahertz technology in non-invasive detection of cells and tissues: opportunities and challenges. RSC Adv. 9, 9354–9363 (2019)

    Article  ADS  Google Scholar 

  • Zaytsev, K.I., et al.: Special section guest editorial: advances in terahertz biomedical science and application. J. Biomed. Opt. 26(4), 043001 (2021)

    Article  ADS  Google Scholar 

  • Zhang, X.C.: Introduction to THz Wave Photonics. Chapter 2. Springer, New York (2010)

    Book  Google Scholar 

  • Zhang, C., Xue, T., Zhang, J., Liu, L., Xie, J., Wang, G., Yao, J. Zhu, W., Ye, X., et al.: Terahertz toroidal metasurface biosensor for sensitive distinction of lung cancer cells. J. Nanophoton. 0520 (2021)

  • Zhao, H., Wang, Y., Chen, L., Shi, J., et al.: High-sensitivity terahertz imaging of traumatic brain injury in a rat model. J. Biomed. Opt. 23(3), 036015 (2018)

    ADS  Google Scholar 

Download references

Acknowledgements

VVT was supported by a grant under the Decree of the Government of the Russian Federation No. 220 of 09 April 2010 (Agreement No. 075-15-2021-615 of 04 June 2021).

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Afshan Shirkavand or Valery V. Tuchin.

Ethics declarations

Conflict of interest

We certify that there are no conflict of interest and also disclosure of all relationships/activities/interests listed in disclosure form.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shirkavand, A., Tuchin, V.V., Jahangiri, F. et al. A review on terahertz non-destructive applications for wound and diabetic foot screening. Opt Quant Electron 54, 467 (2022). https://doi.org/10.1007/s11082-022-03828-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-022-03828-z

Keywords

Navigation