Skip to main content
Log in

Magnetically-supported electrically-induced formation of silicon carbide nanostructures on silicon substrate for optoelectronics applications

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

Synthesis of silicon carbide nanostructures is generally including complex chemical processes and often sophisticated technology. In this work, a new method to synthesize silicon carbide nanostructures on the surface of p-type silicon substrate is proposed by electrically-induced diffusion of carbon atoms deposited on this surface. This process was supported by magnetic field applied on the reaction volume. The electric field was applied throughout a needle-like anode that can increase the electric field intensity by two orders of magnitude. Accordingly, the reaction between carbon and silicon atoms within the surface layer is effectively possible. The structural, electrical and optoelectronics characteristics of the fabricated samples were introduced. A minimum particle size of about 19 nm was determined and reasonable purity of the synthesized nanostructures was confirmed. These nanostructures show peak photoluminescence at 435 nm when excited by a 325 nm radiation source. An anisotropic heterojunction from n-SiC/p-Si structure was formed with ideality factor of 0.53 and built-in potential of 2.20 eV. The proposed technique showed high reliability and very good reproducibility at low cost and simple requirements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The author declares that all data and materials included in this manuscript are available.

References

  • Andrievski, R.A.: Nano-sized silicon carbide: synthesis, structure and properties. Russ. Chem. Rev. 78(9), 821–831 (2009)

    Article  ADS  Google Scholar 

  • Bluet, J.-M., Botsoa, J., Zakharko, Y., Geloen, A., Alekseev, S., Marty, O., Mognetti, B., Patskovsky, S., Rioux, D., Lysenko, V.: SiC as a biocompatible marker for cell labeling. In: Saddow, S. (ed.) Silicon Carbide Biotechnology, pp. 377–429. Elsevier, New York (2012)

    Chapter  Google Scholar 

  • Boo, J.H., Ustin, S.A., Ho, W.: Supersonic jet epitaxy of single crystalline cubic SiC thin films on Si substrates from t-butyldimethylsilane. Thin Solid Films 324, 124–128 (1998)

    Article  ADS  Google Scholar 

  • Chen, K., Huang, Z., Huang, J., Fang, M., Liu, Y., Ji, H., Yin, L.: Synthesis of SiC nanowires by thermal evaporation method without catalyst assistant. Ceram. Int. 39, 1957–1962 (2013)

    Article  Google Scholar 

  • Derevyanko, I.V., Polyakov, O.I.: Studies of polytype silicon carbide produced from recycled materials. Metall. Min. Ind. 4(4), 14–18 (2012)

    Google Scholar 

  • Di Carlo, J.A., Yun, H.-M.: Non-oxide (silicon carbide) fibers. In: Bansal, N.P. (ed.) Handbook of Ceramic Composites, pp. 33–52. Springer, Berlin (2005)

    Google Scholar 

  • Du, X.W., Zhao, X., Jia, S.L., Lu, Y.W., Li, J.J., Zhao, N.Q.: Direct synthesis of SiC nanowires by multiple reaction VS growth. Mater. Sci. Eng. B 136, 72–77 (2007)

    Article  Google Scholar 

  • Fan, J.Y., Wu, X.L., Chu, P.K.: Low-dimensional SiC nanostructures: fabrication, luminescence, and electrical properties. Prog. Mater. Sci. 51, 983–1031 (2006)

    Article  Google Scholar 

  • Gupta, A., Paramnik, D., Varma, S., Jacob, C.: CVD growth and characterization of 3C-SiC thin films. Bull. Mater. Sci. 27(5), 445–451 (2004)

    Article  Google Scholar 

  • Hamadi, O.A.: Characteristics of CdO-Si heterostructure produced by plasma-induced bonding technique. Proc. Imeche Part L J. Mater. Des. Appl. 222, 65–71 (2008a)

    Google Scholar 

  • Hamadi, O.A.: Effect of annealing on the electrical characteristics of CdO-Si heterostructure produced by plasma-induced bonding technique. Iraq. J. Appl. Phys. (IJAP) 4(3), 34–37 (2008b)

    Google Scholar 

  • Hamadi, O.A.: Profiling of antimony diffusivity in silicon substrates using laser-induced diffusion technique. Iraq. J. Appl. Phys. Lett. 3(1), 23–26 (2010)

    Google Scholar 

  • Hamadi, O.A., Yahiya, K.Z.: Optical and electrical properties of selenium-antimony heterojunction formed on silicon substrate. Sharjah Univ. J. Pure Appl. Sci. 4(2), 1–11 (2007)

    Google Scholar 

  • Hamadi, O.A., Yahiya, K.Z., Jassim, O.N.S.: Properties of silicon carbide thin films deposited by vacuum thermal evaporation. J. Semicond. Technol. Sci. (JSTS) 5(3), 69–73 (2005)

    Google Scholar 

  • Hammadi, O.A.: Photovoltaic properties of thermally-grown selenium-doped silicon photodiodes for infrared detection applications. Photonic Sens. 5(2), 152–158 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  • Hammadi, O.A., Khalaf, M.K., Kadhim, F.J.: Silicon nitride nanostructures prepared by reactive sputtering using closed-field unbalanced dual magnetrons. Proc. Imeche Part L J. Mater. Des. Appl. (2015a). https://doi.org/10.1177/1464420715601151

    Article  Google Scholar 

  • Hammadi, O.A., Khalaf, M.K., Kadhim, F.J.: Fabrication of UV photodetector from nickel oxide nanoparticles deposited on silicon substrate by closed-field unbalanced dual magnetron sputtering technique. Opt. Quantum Electron. 47, 3805–3813 (2015b)

    Article  Google Scholar 

  • Hammadi, O.A., Khalaf, M.K., Kadhim, F.J.: Fabrication and characterization of UV photodetectors based on silicon nitride nanostructures prepared by magnetron sputtering. Proc. Imeche Part N J. Nanomater. Nanoeng. Nanosyst. 230(1), 32–36 (2016)

    Google Scholar 

  • Han, W., Fan, S., Li, Q., Liang, W., Gu, B., Yu, D.: Continuous synthesis and characterization of silicon carbide nanorods. Chem. Phys. Lett. 265, 374–378 (1997)

    Article  ADS  Google Scholar 

  • Khamsuwan, J., Intarasiri, S., Kirkby, K., Chu, P.K., Singkarat, S., Yu, L.D.: Ion-beam synthesis and photoluminescence of SiC nanocrystals assisted by MeV-heavy-ion-beam annealing. Nucl. Instrum. Methods Phys. Res. B 282, 88–91 (2012)

    Article  ADS  Google Scholar 

  • Kim, Y.T., Yoon, S.G., Kim, H., Suh, S.J., Janga, G.E., Yoon, D.H.: Crystallization of a-Si:H and a-SiC:H thin films deposited by PECVD. J. Ceram. Process. Res. 6(4), 294–297 (2005)

    Google Scholar 

  • Leal, G., Bastos Campos, T.M., da Silva Sobrinho, A.S., Pessoa, R.S., Maciel, H.S., Massi, M.: Characterization of SiC thin films deposited by HiPIMS. Mater. Res. 17(2), 472–476 (2014)

    Article  Google Scholar 

  • Madapura, S., Steckl, A.J., Loboda, M.: Heteroepitaxial growth of SiC on Si(100) and (111) by chemical vapor deposition using trimethylsilane. J. Electrochem. Soc. 146(3), 1197–1202 (1999)

    Article  ADS  Google Scholar 

  • Nagarajan, K., Kumara Raman, S.: Photoluminescence Study of SiC Nanotubes. Bulg. J. Phys. 35, 53–57 (2008)

    Google Scholar 

  • Sarro, P.M.: Silicon carbide as a new MEMS technology. Sens. Actuators Phys. 82(1–3), 210–218 (2000)

    Article  ADS  Google Scholar 

  • Seong, H.K., Choi, H.J., Lee, S.K., Lee, J.I., Choi, D.J.: Optical and electrical transport properties in silicon carbide nanowires. Appl. Phys. Lett. 85(7), 1256–1258 (2004)

    Article  ADS  Google Scholar 

  • Stoldt, C.R., Fritz, M.C., Carraro, C., Maboudian, R.: Micromechanical properties of silicon-carbide thin films deposited using single-source chemical-vapor deposition. Appl. Phys. Lett. 79(3), 347–349 (2001)

    Article  ADS  Google Scholar 

  • Sun, G.S., Li, J.M., Luo, M.C., Zhu, S.R., Wang, L., Zhang, F.F., Lin, L.Y.: Epitaxial growth of SiC on complex substrates. J. Cryst. Growth 227–228, 811–815 (2001)

    Article  ADS  Google Scholar 

  • Tanner, P., Dimitrijev, S., Harrison, H.B.: Current mechanisms in n-SiC/p-Si heterojunctions. In: Proceedings of IEEE Conference on Optoelectronic and Microelectronic Materials and Devices, COMMAD 2008 (28 July–1 August, Sydney, Australia), pp. 41–43 (2008)

  • Volz, K., Schreiber, S., Gerlach, J.W., Reiber, W., Rauschenbach, B., Stritzker, B., Assmann, W., Ensinger, W.: Heteroepitaxial growth of 3C-SiC on (100) silicon by C60 and Si molecular beam epitaxy. Mater. Sci. Eng. A 289, 255–264 (2000)

    Article  Google Scholar 

  • Xi, G., Yu, S., Zhang, R., Zhang, M., Ma, D., Qian, Y.: Crystalline silicon carbide nanoparticles encapsulated in branched wavelike carbon nanotubes: synthesis and optical properties. J. Phys. Chem. B 109, 13200–13204 (2005)

    Article  Google Scholar 

  • Yang, Y.T., Ekinci, K.L., Huang, X.M.H., Schiavone, L.M., Roukes, M.L., Zorman, C.A., Mehregany, M.: Monocrystalline silicon carbide nanoelectromechanical systems. Appl. Phys. Lett. 78(2), 162–164 (2001)

    Article  ADS  Google Scholar 

  • Yang, S., Cai, W., Zeng, H., Xu, X.: Ultra-fine β-SiC quantum dots fabricated by laser ablation in reactive liquid at room temperature and their violet emission. J. Mater. Chem. 19, 7119–7123 (2009)

    Article  Google Scholar 

  • Yih, P.H., Li, J.P., Steckl, A.J.: SiC/Si heterojunction diodes fabricated by self-selective and by blanket rapid thermal chemical vapour deposition. IEEE Trans. Electron Devices 41(3), 281–287 (1994)

    Article  ADS  Google Scholar 

  • Yousif, A.K., Hamadi, O.A.: Plasma-induced etching of silicon surfaces. Bulg. J. Phys. (BJP) 35(3), 191–197 (2008)

    Google Scholar 

  • Zhang, H., Ding, W., He, K., Li, M.: Synthesis and characterization of crystalline silicon carbide nanoribbons. Nanoscale Res. Lett. 5, 1264–1271 (2010)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

Not applicable.

Funding

This work did not any fund or financial support from any institution.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oday A. Hammadi.

Ethics declarations

Conflict of interest

The author declares that he does not have any conflict of interest related to this work.

Ethics approval

The author declares that his commitment to ethics related to his work.

Consent to participate

The author declares that he has individually designed the experiment, collected and analyzed the data, and written the manuscript.

Consent of publication

The author declares his consent of publication.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hammadi, O.A. Magnetically-supported electrically-induced formation of silicon carbide nanostructures on silicon substrate for optoelectronics applications. Opt Quant Electron 54, 427 (2022). https://doi.org/10.1007/s11082-022-03824-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-022-03824-3

Keywords

Navigation