Skip to main content

Advertisement

Log in

Six band terahertz absorption in metamaterial for designing optical filters, and sensors

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

Six band metamaterial perfect absorber at the terahertz region is made and designed of two rectangular bars and a metallic board separated by a dielectric spacer. The simulated results show that the absorber has six distinctive absorption modes at frequencies 1.80 THz, 3.35 THz, 4.5 THz, 5.25 THz, 5.95 THz, and 6.1 THz with absorption rates of 97%, 96.2%, 97.07%, 91.1%, 100%, and 83%, respectively. The absorption mechanism of the six-band absorber was investigated by near-field distribution. The frequencies of these absorption bands can be adjusted by controlling the structural parameters of the proposed design. Furthermore, the influence of the geometric parameters on the performance of six-band light absorption was also analyzed to further verify the underlying mechanism of these six bands. In addition, two conventional parameters, the sensitivity (S) and figure of merit (FOM) were used to investigate the sensing performance of the proposed design. FOM of the fifth absorption peak can reach up to 26.9 which is much higher than the previously reported values for the terahertz region. This type of six-band absorber finds many potential applications in sensing and detection, filters, solar energy, and stealth technology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Agarwal, M., Behera, A.K., Meshram, M.K.: Wide-angle quad-band polarization-insensitive-metamaterial absorber. Electron. Lett. 52, 340–342 (2016)

    ADS  Google Scholar 

  • AI-Naib, I.: Thin-film sensing via fano resonance excitation in symmetric terahertz metamaterials. J. Infrared Millim. Terahertz Waves 39, 1–5 (2018)

    Google Scholar 

  • Astorino, M.D., Frezza, F., Tedeschi, N.: Ultra-thin narrow-band, complementary narrow-band, and dual-band metamaterial absorbers for applications in the THz regime. J Appl Phys. 121, 063103 (2017)

    ADS  Google Scholar 

  • Ayop, O., Rahim, M.K.A., Murad, N.A., Samsuri, N.A., Zubir, F., Majid, H.A.: Dual-band metamaterial perfect absorber with nearly polarization-independent. Appl. Phys. A 123(1), 0947–8396 (2017)

    Google Scholar 

  • Bhattacharyya, S., Srivastava, K.V.: Triple band polarization-independent ultra-thin metamaterial absorber using electric field-driven LC resonator. J. Appl. Phys. 115, 064508 (2014)

    ADS  Google Scholar 

  • Bhattarai, K., Silva, S., Song, K., Urbas, A., Lee, S.J., Ku, Z., Zhou, J.: Metamaterial perfect absorber analyzed by a meta-cavity model consisting of multilayer metasurfaces. Sci. Rep. 7(1), 10569 (2017)

    ADS  Google Scholar 

  • Burrow, J.A., Yahiaoui, R., Sims, W., Chase, Z., Tran, V., Saramgan, A., Mathews, J., Rockward, W.S., Agha, I., Searles, T.A.: Influence of symmetry breaking on Fano-like resonances in high figure of merit planar terahertz metafilms (2018). https://arxiv.org/pdf/181202063.pdf

  • Cao, S., Yu, W., Wang, T., Shen, H., Han, X., Xu, W., Zhang, X.: Meta-micro windmill structure with multiple absorption peaks for the detection of ketamine and amphetamine-type stimulants in terahertz domain. Opt. Mater. Express 4(9), 1876–1884 (2014)

    ADS  Google Scholar 

  • Chen, J., Hu, Z., Wang, S., Huang, H., Liu, M.: A triple-band, polarization- and incident angle-independent microwave metamaterial absorber with interference theory. Eur. Phys. J. B 89, 14 (2016)

    ADS  Google Scholar 

  • Churig, D.S., Mock, J.J., Justice, B.J., Cummer, S.A., Pendry, J.B., Starr, A.F., Smith, D.R.: Metamaterial electromagnetic cloak at microwave frequency. Science 314(5801), 977–980 (2006)

    ADS  Google Scholar 

  • Cong, L., Tan, S., Yahiaoui, R., Yan, F., Zhang, W., Singh, R.: Experimental demonstration of ultrasensitive sensing with terahertz metamaterial absorbers: a comparison with the metasurfaces. Appl. Phys. Lett. 106, 031107 (2015)

    ADS  Google Scholar 

  • Cui, Y., He, Y., Jin, Y., Ding, F., Yang, L., Ye, Y., Zhong, S., Lin, Y., He, S.: Plasmonic and metamaterial structures as electromagnetic absorbers. Laser Photon Rev. 8(4), 495–520 (2014)

    ADS  Google Scholar 

  • Fan, K., Suen, J.Y., Liu, X., Padilla, W.J.: All-dielectric metasurface absorbers for uncooled terahertz imaging. Optica 4, 601–604 (2017)

    ADS  Google Scholar 

  • Faniayeu, I., Mizeikis, V.: Vertical split-ring resonator perfect absorber metamaterial for IR frequencies realized via femtosecond direct laser writing. Appl. Phys. Express 10, 062001 (2017a)

    ADS  Google Scholar 

  • Faniayeu, I., Mizeikis, V.: Vertical split-ring resonator perfect absorber metamaterial for IR frequencies realized via femtosecond direct laser writing. Appl. Phys. Express 10, 062001 (2017b)

    ADS  Google Scholar 

  • Ghobadi, A., Hajian, H., Butun, B., Ozbay, E.: Strong light-matter interaction in lithography free planar metamaterial perfect absorbers. ACS Photonics 5(11), 4203–4221 (2018)

    Google Scholar 

  • Grigorenko, A.N., Geim, A.K., Gleeson, H.F., Zhang, Y., Firsov, A.A., Khrushchev, I.Y., Petrovic, J.: Nanofabricated media with negative permeability at visible frequencies. Nature 438, 335–338 (2005)

    ADS  Google Scholar 

  • Guo, S., Hu, C., Zhang, H.: Unidirectional ultra-broadband and wide-angle absorption in graphene-embedded photonic crystals with the cascading structure comprising the Octonacci sequence. J. Opt. Soc. Am. B 37(9), 2678–2687 (2020)

    ADS  Google Scholar 

  • Hu, X., Xu, G., Wen, L., Wang, H., Zhao, Y., Zhang, Y., Cumming, D.R.S., Chen, Q.: Metamaterial absorber integrated microfluidic terahertz sensors. Laser Photonics Rev. 10, 962–969 (2016)

    ADS  Google Scholar 

  • Huang, H., Xia, H., Xie, W., Guo, Z., Li, H.: Design of a size-efficient tunable metamaterial absorber based on leaf-shaped cell at near-infrared regions. Results Phys. 9, 1310–1316 (2018a)

    ADS  Google Scholar 

  • Huang, H., Xia, H., Guo, Z., Li, H., Xie, D.: Polarization-insensitive and tunable plasmon-induced transparency in a graphene-based terahertz metamaterial. Opt. Commun. 424, 163–169 (2018b)

    ADS  Google Scholar 

  • Huang, H., Xia, H., Guo, Z., Xie, D., Li, H.: Dynamically tunable dendritic graphene-based absorber with thermal stability at infrared regions. Appl. Phys. A 124(6), 429 (2018c)

    ADS  Google Scholar 

  • Islam, M., Rao, S.J.M., Kumar, G., Pal, B.P., Chowdhury, D.R.: Role of resonance modes on terahertz metamaterials based thin-film sensors. Sci. Rep. 7, 7355 (2017)

    ADS  Google Scholar 

  • Jia, W., Bai, J., Roberts, K., Le, K.Q., Zhou, D.: Design and simulation of insensitive metamaterial terahertz absorber with five bands. Microw. Opt. Technol. Lett. 62, 2649–2655 (2020)

    Google Scholar 

  • Jiang, W., Yan, L., Ma, H., Fan, Y., Wang, J., Feng, M., Qu, S.: Electromagnetic wave absorption and compressive behavior of a three-dimensional metamaterial absorber based on 3D printed honeycomb. Sci. Rep. 8, 4717 (2018)

    ADS  Google Scholar 

  • Kajtar, G., Kafesaki, M., Economou, E.N., Soukoulis, C.M.: Theoretical model of homogeneous metal-insulator-metal perfect multi-band absorbers for the visible spectrum. J. Phys. D 49, 055104 (2016)

    ADS  Google Scholar 

  • Kim, J., Han, K., Hahn, J.W.: Selective dual-band metamaterial perfect absorber for infrared stealth technology. Sci. Rep. 7, 6740 (2017)

    ADS  Google Scholar 

  • Landy, N.I., Sajuyigbe, S., Mock, J.J., Smith, D.R., Padilla, W.J.: Perfect metamaterial absorber. Phys. Rev. Lett. 100, 207402 (2008)

    ADS  Google Scholar 

  • Li, Y., Chen, X., Hu, F., Li, D., Teng, H., Rong, Q., Zhang, W., Han, J., Liang, H.: Four resonators based high sensitive terahertz metamaterial biosensor used for measuring the concentration of protein. J. Phys. d: Appl. Phys. 52, 095105 (2019)

    ADS  Google Scholar 

  • Liu, S., Zhuge, J., Ma, S., Chen, H., Bao, D., He, Q., Zhou, L., Cui, T.J.: A bi-layered quad-band metamaterial absorber at terahertz frequencies. J. Appl. Phys. 118, 245304 (2015)

    ADS  Google Scholar 

  • Liu, X., Fan, K., Shadrivov, I.V., Padilla, W.J.: Experimental realization of a terahertz all-dielectric metasurface absorber. Opt. Express 25, 191–201 (2017)

    ADS  Google Scholar 

  • Meng, T., Hu, D., Zhu, Q.: Design of a five-band terahertz perfect metamaterial absorber using two resonators. Opt. Commun. 415, 151–155 (2018)

    ADS  Google Scholar 

  • Meng, K., Park, S.J., Nurnett, A.D., Gill, T., Wood, C.D., Rosamond, M., Li, L.H., Chen, L., Bacon, D.R., Freeman, J.R., Dean, P., Ahn, Y.H., Linfield, E.H., Davies, A.G., Cunningham, J.E.: Increasing the sensitivity of terahertz split-ring resonator metamaterials for dielectric sensing by localized substrate etching. Opt. Express 27, 23164–23172 (2019)

    ADS  Google Scholar 

  • Park, J.W., Tuong, P.V., Rhee, J.Y., Kim, K.W., Jang, W.H., Choi, E.H., Chen, L.Y., Lee, Y.: Multi-band metamaterial absorber based on the arrangement of donut-type resonators. Opt. Express 21(8), 9691–9702 (2013)

    ADS  Google Scholar 

  • Pendry, J.B.: Negative refraction makes a perfect lens. Phys. Rev. Lett. 85, 3966 (2000)

    ADS  Google Scholar 

  • Radi, Y., Simovski, C.R., Tretyakov, S.A.: Thin perfect absorbers for electromagnetic waves: theory, design, and realizations. Phys. Rev. Appl. 3, 037001 (2015)

    ADS  Google Scholar 

  • Saadeldin, A.S., Hameed, M.F.O., Elkaramany, E.M.A., Obayya, S.S.A.: Highly sensitive terahertz metamaterial sensor. IEEE Sens. J. 19, 7993–7999 (2019)

    ADS  Google Scholar 

  • Schuriga, D., Mock, J.J., Smith, D.R.: Electric-field-coupled resonators for negative permittivity metamaterials. Appl. Phys. Lett. 88, 041109 (2006)

    ADS  Google Scholar 

  • Seddon, N., Bearpark, T.: Observation of the inverse Doppler effect. Science 302(5650), 1537–1540 (2003)

    ADS  Google Scholar 

  • Shen, F., Qin, J., Han, Z.: Planar antenna array as a highly sensitive terahertz sensor. Appl. Opt. 58, 540–544 (2019)

    ADS  Google Scholar 

  • Smith, D.R., Padilla, W.J., Vier, D.C., Nemat-Nasser, S.C., Schultz, S.: Composite medium with simultaneously negative permeability and permittivity. Phys. Rev. Lett. 84, 4184–4187 (2000)

    ADS  Google Scholar 

  • Sood, D., Tripathi, C.C.: A polarization-insensitive compact ultrathin wide-angle pentaband metamaterial absorber. J. Electromagn. Waves Appl. 31, 394–404 (2017)

    Google Scholar 

  • Tao, H., Strikwerda, A.C., Fan, K., Bingham, C.M., Padilla, W.J., Zhang, X., Averitt, R.D.: Terahertz metamaterials on free-standing highly-flexible polyimide substrates. Condens. Matter 41, 232004 (2008). https://doi.org/10.1088/0022-3727/41/23/232004

    Article  Google Scholar 

  • Veselago, V.G.: The electrodynamics of substances with simultaneously negative values of e and µ. Sov. Phys. Usp. 10(4), 509–514 (1968)

    ADS  Google Scholar 

  • Viet, D.T., Hien, N.T., Tuong, P.V., Minh, N.Q., Trang, P.T., Le, L.N., Lee, Y., Lam, V.D.: Perfect absorber metamaterials: peak, multi-peak and broadband absorption. Opt. Common 322, 209–213 (2014)

    ADS  Google Scholar 

  • Wang, B.X., Zhai, X., Wang, G.Z., Huang, W.Q., Wang, L.L.: Design of four-band and polarization-insensitive terahertz metamaterial absorber. IEEE Photon J. 7, 4600108 (2015a)

    Google Scholar 

  • Wang, W., Yan, M., Pang, Y., Wang, J., Ma, H., Qua, S., Chen, H., Xu, C., Feng, M.: Ultra-thin quadri-band metamaterial absorber based on spiral structure. Appl. Phys. A 118(2), 443–447 (2015b)

    ADS  Google Scholar 

  • Wang, B.X., Wang, G.Z., Wang, L.L.: Design of a novel dual-band terahertz metamaterial absorber. Plasmonics 11, 523–530 (2016a)

    Google Scholar 

  • Wang, B.X., Wang, G.Z., Sang, T.: Simple design of novel triple-band terahertz metamaterial absorber for sensing application. J. Phys. D 49, 165307 (2016b)

    ADS  Google Scholar 

  • Wang, B.X., Wang, G.Z., Sang, T., Wang, L.L.: Six-band terahertz metamaterial absorber based on the combination of multiple-order responses of metallic patches in a dual-layer stacked resonance structure. Sci. Rep. 7, 41373 (2017a)

    ADS  Google Scholar 

  • Wang, L., Hu, C., Wu, X., Xia, Z., Wen, W.: Multi-band metamaterial absorber with arbitrary polarization and wide-incident angle. Appl. Phys. A 123, 651 (2017b)

    ADS  Google Scholar 

  • Wang, B.X., Tang, C., Niu, Q., He, Y., Chen, T.: Design of narrow discrete distances of dual-/triple-band terahertz metamaterial absorbers. Nanoscale Res. Lett. 14, 64 (2019)

    ADS  Google Scholar 

  • Wang, B.X., He, Y., Lou, P., Huang, W.Q., Pi, F.: Penta-band terahertz light absorber using five localized resonance responses of three-patterned resonators. Results Phys. 16, 102930 (2020)

    Google Scholar 

  • Watts, C.M., Liu, X., Padilla, W.J.: Metamaterial electromagnetic wave absorbers. Adv. Mater. 24, OP98–OP120 (2012)

    Google Scholar 

  • Xiao, D., Tao, K.: Ultra-compact metamaterial absorber for multiband light absorption at mid-infrared frequencies. Appl. Phys. Express 8, 102001 (2015)

    ADS  Google Scholar 

  • Xu, Z.C., Gao, R.M., Ding, C.F., Zhang, Y.T., Yao, J.Q.: Multiband metamaterial absorber at terahertz frequencies. Chin. Phys. Lett. 31, 054205 (2014)

    ADS  Google Scholar 

  • Yahiaoui, R., Tan, S., Cong, L., Singh, R., Yan, F., Zhang, W.: Multispectral terahertz sensing with highly flexible ultrathin metamaterial absorber. J. Appl. Phys. 118, 083103 (2015)

    ADS  Google Scholar 

  • Yahiaoui, R., Strikwerda, A.C., Jepsen, P.U.: Terahertz plasmonic structure with enhanced sensing capabilities. IEEE Sens. J. 16, 2484–2488 (2016)

    ADS  Google Scholar 

  • Yao, G., Ling, F., Yue, J., Luo, C., Ji, J., Yao, J.: Dual-band tunable perfect metamaterial absorber in the THz range. Opt. Express 24, 1518–1527 (2016)

    ADS  Google Scholar 

  • Yu, P., Wu, J., Ashalley, E., Govorov, A., Wang, Z.: Dual-band absorber for multispectral plasmon-enhanced infrared photodetection. J Phys D. 49, 365101 (2016)

    Google Scholar 

  • Zhai, H., Zhan, C., Li, Z., Liang, C.: A triple-band ultrathin metamaterial absorber with wide-angle and polarization stability. IEEE Antennas Wirel. Propag Lett. 14, 241–244 (2014)

    ADS  Google Scholar 

  • Zhang, B., Hendrickson, J., Guo, J.: Multispectral near-perfect metamaterial absorbers using spatially multiplexed plasmon resonance metal square structures. J. Opt. Soc. Am. B 30(3), 656–662 (2013)

    ADS  Google Scholar 

  • Zhang, C., Huang, C., Pu, M., Song, J., Zhao, Z., Wu, X., Luo, X.: Dual-band wide-angle metamaterial perfect absorber based on the combination of localized surface plasmon resonance and Helmholtz resonance. Sci. Rep. 7, 5652 (2017)

    ADS  Google Scholar 

  • Zhang, H.F., Zhang, H., Yao, Y., Yang, J., Liu, J.-X.: A band enhanced plasma metamaterial absorber based on triangular ring-shaped resonators. IEEE Photonics J. 10(4), 5700610 (2018)

    Google Scholar 

  • Zhang, H., Ma, Y., Zhang, H.F., Yang, J., Liu, J.X.: A band enhanced tunable ultra-broadband absorber based on loading the lumped resistors and cavity resonance. Plasmonics 14, 755–762 (2019)

    Google Scholar 

Download references

Funding

The authors acknowledge HEC and Islamia College University for providing financial assistance for this work.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shahzad Anwar or Muhammad Maqbool.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests and have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anwar, S., Ali, G., Maab, H. et al. Six band terahertz absorption in metamaterial for designing optical filters, and sensors. Opt Quant Electron 54, 436 (2022). https://doi.org/10.1007/s11082-022-03821-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-022-03821-6

Keywords

Navigation