Skip to main content
Log in

Analysis of optical and thermal properties of 940-nm vertical-cavity surface-emitting lasers

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

We achieve 13.5 mW optical output power, 48% power conversion efficiency, 1.17 W/A slope efficiency and 17 kW/cm2 laser power density with top-surface-emitting 940 nm oxide-confined vertical-cavity surface-emitting laser (VCSEL). The physical mechanism of minimum threshold current generation in oxide-confined VCSEL has been thoroughly studied theoretically and experimentally. Further, we also succeeded in 90.8 mW optical output power, 40% power conversion efficiency with 2 × 4 VCSEL arrays. We find an increase in output power and PCE of 2 × 2 VCSEL arrays as we increase the array spacing which we attribute primarily to increased heat dissipation and reduced thermal crosstalk between the emitters. Thermal properties in oxide-confined 2 × 2 VCSEL arrays were analyzed numerically and experimentally. The simulated results are in good agreement with the measurement. It is proved that theoretical simulation is very useful for the future device optimization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Chuyu, Z., Xing, Z., Di, L., Yongqiang, N., Lijun, W.: Enhanced thermal stability of VCSEL array by thermoelectric analysis-based optimization of mesas distribution. Chin. Phys. B 26(06), 157–164 (2017)

    Google Scholar 

  • Derebezov, I.A., Haisler, V.A., Bakarov, A.K., Kalagin, A.K., Toropov, A.I., Kachanova, M.M., Gavrilova, T.A., Semenova, O.I., Tretyakov, D.B., Beterov, I.I., Entin, V.M., Ryabtsev, I.I.: Single-mode vertical-cavity surface emitting lasers for Rb-87-based chip-scale atomic clock. Semiconductors 44(11), 1422–1426 (2010)

    Article  ADS  Google Scholar 

  • Hariyama, T., Sandborn, P.A.M., Watanabe, M., Wu, M.C.: High-accuracy range-sensing system based on FMCW using low-cost VCSEL. Opt. Express 26(7), 9285 (2018)

    Article  ADS  Google Scholar 

  • Iga, K.: Forty years of vertical-cavity surface-emitting laser: invention and innovation. Jpn. J. Appl. Phys. 57(8), 08PA01 (2018)

    Article  Google Scholar 

  • Larisch, G., Moser, P., Lott, J.A., Bimberg, D.: Impact of photon lifetime on the temperature stability of 50 Gb/s 980 nm VCSELs. IEEE Photonic Technol. Lett. 28(21), 2327–2330 (2016)

    Article  ADS  Google Scholar 

  • Lu, H.H., Li, C.Y., Chu, C.A., Lu, T.C., Chen, B.R., Wu, C.J., Lin, D.H.: 10 m/25 Gbps LiFi transmission system based on a two-stage injection-locked 680 nm VCSEL transmitter. Opt. Lett. 40(19), 4563–4566 (2015)

    Article  ADS  Google Scholar 

  • Michalzik, R.: VCSELs-Fundamentals, Technology and Applications of Vertical-Cavity Surface-Emitting Lasers. Springer, Berlin (2013)

    Google Scholar 

  • Moench, H., Andreadaki, A., Gronenborn, S., Kolb, J.S., Loosen, P., Miller, M., Schwarz, T., van der Lee, A., Weichmann, U.: High power electrically pumped VECSELs and arrays. Paper presented at the Vertical External Cavity Surface Emitting Lasers (Vecsels) Iv, San Francisco, CA (2014a)

  • Moench, H., Kolb, J.S., Engelhardt, A.P., Gerlach, P., Witzigmann, B.: Optimized VCSELs for high-power arrays. Proc. SPIE 9001(3), 395–406 (2014b)

    Google Scholar 

  • Nazaruk, D.E., Blokhin, S.A., Maleev, N.A., Bobrov, M.A., Kuzmenkov, A.G., Vasil’ev, A.P., Gladyshev, A.G., Pavlov, M.M., Blokhin, A.A., Kulagina, M.M., Vashanova, K.A., Zadiranov, Y.M., Fefelov, A.G., Ustinov, V.M.: Single-mode temperature and polarisation-stable high-speed 850nm vertical cavity surface emitting lasers. J. Phys. Conf. Ser. 572, 012036 (2014)

    Article  Google Scholar 

  • Nishikata, K., Yokouchi, N., Koyama, F.: Wide temperature operation of 850-nm VCSEL and isolator-free operation of 1300-nm VCSEL for a variety of applications. Proc. SPIE Int. Soc. Opt. Eng. 5737, 8–19 (2005)

    ADS  Google Scholar 

  • Seurin, J.F., Xu, G.Y., Wang, Q., Guo, B.M., Van Leeuwen, R., Miglo, A., Pradhan, P., Wynn, J.D., Khalfin, V., Ghosh, C.: High-brightness pump sources using 2D VCSEL arrays. Vertical-Cavity Surface-Emitting Lasers Xiv 7615 (2010)

  • Seurin, J.-F., Zhou, D., Xu, G., Miglo, A., Li, D., Chen, T., Guo, B., Ghosh, C.: High-efficiency VCSEL arrays for illumination and sensing in consumer applications. Paper presented at the Conference on Vertical-Cavity Surface-Emitting Lasers XX, San Francisco, CA (2014)

  • Shichijo, T., Miyamoto, T.: Rate equation-based numerical analysis of mutual injection for phase locked 2D-VCSEL array using Talbot effect. Jpn. J. Appl. Phys. 58(1), SJJC01 (2019)

    Article  Google Scholar 

  • Simpanen, E., Gustavsson, J.S., Larsson, A., Karlsson, M., Sorin, W.V., Mathai, S., Tan, M.R., Bickham, S.R.: 1060 nm single-mode VCSEL and single-mode fiber links for long-reach optical interconnects. J. Lightwave Technol. 37(13), 2963–2969 (2019)

    Article  ADS  Google Scholar 

  • Tong, C.Z.: Design and analysis of 1.3 μm GaAs-based quantum dot vertical-cavity surface-emitting lasers. Acta Physica Sinica 54(8), 3651–3656 (2005)

    Article  Google Scholar 

  • Wang, H., Xu, W., Cheng, Q., Ji, Z., Gao, R., Wu, P., Xu, Z.: Phase-locking of a Gunn oscillator at 3 mm waveband using high temperature superconducting Josephson junction harmonic mixer. Chin. Phys. Lett. 12(4), 253 (1995)

    Article  ADS  Google Scholar 

  • Xun, M., Pan, G., Zhao, Z., Sun, Y., Yang, C., Kan, Q.: Analysis of thermal properties of 940-nm vertical cavity surface emitting laser arrays. IEEE Trans. Electron Devices 68(1), 158–163 (2021)

    Article  ADS  Google Scholar 

  • Yong-Qin, H., Yan, L., Yuan, F., Chang-Ling, Y., Ying-Jie, Z., Yu-Xia, W., Xiao-Hua, W., Yi, Q., Guo-Jun, L.: Large aperture vertical cavity surface emitting laser with distributed-ring contact. Appl. Optics 50(7), 1034–1037 (2011)

    Article  ADS  Google Scholar 

  • Yun, W., Zhenghao, C., Shengmao, L.: Theoretical and experimental research on the intersubband absorption and its stark shifts of GaAs/AlGaAs MQW. J. Semicond. 15(2), 89–97 (1994)

    Google Scholar 

  • Zhou, D., Seurin, J.F., Pu, Z., Tong, C., Leeuwen, R.V.: Progress on high-power high-brightness VCSELs and applications. Proc. SPIE Int. Soc. Opt. Eng. 9381, 93810–93812 (2015)

    Google Scholar 

Download references

Acknowledgements

This work was supported in part by the National Natural Science Foundation (61505003, 61674140) and Beijing education commission project (SQKM201610005008).

Funding

The funders had no role in the design of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or in the decision to publish the results.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Congcong Wang or Zhiyong Wang.

Ethics declarations

Conflict of interest

The authors have not disclosed any competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, C., Li, C. & Wang, Z. Analysis of optical and thermal properties of 940-nm vertical-cavity surface-emitting lasers. Opt Quant Electron 54, 438 (2022). https://doi.org/10.1007/s11082-022-03809-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-022-03809-2

Keywords

Navigation