Skip to main content

Advertisement

Log in

Perfect selective metamaterial absorber with thin-film of GaAs layer in the visible region for solar cell applications

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

In this paper, we have presented a new design of a metamaterial perfect absorber (MPA) consisting of three layers of metal-dielectric-metal in which the top layer is considered of special kind square patches at different places in a unit cell. This MPA exhibits wideband, wide-angle, and polarization-independent absorption performance in the visible region. The proposed MPA structure is composed of a resonator of metal and spacer of a dielectric layer. The interactions between the resonator and the coupling of metal-dielectric create the plasmonics effects which are responsible for the perfect absorption. Under a specific condition, this simulated absorber structure exhibits an extremely high broadband absorption between 591.54 and 704.40 nm wavelength range with near-unity absorption, and a single peak observed at 385.33 nm with the absorption of 94.16%. We extracted the impedance of the absorber and matched it with free space, and also demonstrated the effective permittivity and permeability. Moreover, the parametric study of the resonators, dielectric layer, and multi-band topology has also been investigated. The polarization-insensitive-based metamaterial may be utilized to improve the efficiency of different devices in the visible range. Furthermore, we have calculated the absorption of the proposed MPA under solar radiation (AM1.5) for different structural parameters. The proposed absorber greatly enhances the conversion efficiency which is highly useful for solar cells. We also determined the short circuit current density of this absorber for different thicknesses of the GaAs layer. The meta-surface of Al metal provides a good performance in comparison to other costly metals and the proposed structure may be used for different devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Almoneef, T.S., Ramahi, O.M.: Metamaterial electromagnetic energy harvester with near unity efficiency. Appl. Phys. Lett. 106(15), 153902 (2015)

    Article  ADS  Google Scholar 

  • Aydin, K., Ferry, V.E., Briggs, R.M., Atwater, H.A.: Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers. Nat. Commun. 2(1), 1–7 (2011)

    Article  Google Scholar 

  • Boriskina, S.V., Ghasemi, H., Chen, G.: Plasmonic materials for energy: From physics to applications. Mater. Today 16(10), 375–386 (2013)

    Article  Google Scholar 

  • Cheng, Y., Du, C.: Broadband plasmonic absorber based on all silicon nanostructure resonators in visible region. Opt. Mater. 98, 109441 (2019)

    Article  Google Scholar 

  • Dayal, G., Ramakrishna, S.A.: Design of multi-band metamaterial perfect absorbers with stacked metal-dielectric disks. J. Opt. 15(5), 055106 (2013)

    Article  ADS  Google Scholar 

  • Ding, F., Jin, Y., Li, B., Cheng, H., Mo, L., He, S.: Ultrabroadband strong light absorption based on thin multilayered metamaterials. Laser Photon. Rev. 8(6), 946–953 (2014)

    Article  ADS  Google Scholar 

  • Ding, C., Jiang, L., Wu, L., Gao, R., Xu, D., Zhang, G., Yao, J.: Dual-band ultrasensitive THz sensing utilizing high quality Fano and quadrupole resonances in metamaterials. Opt. Commun. 350, 103–107 (2015)

    Article  ADS  Google Scholar 

  • Gao, H., Peng, W., Liang, Y., Chu, S., Yu, L., Liu, Z., Zhang, Y.: Plasmonic broadband perfect absorber for visible light solar cells application. Plasmonics 15(2), 573–580 (2020)

    Article  Google Scholar 

  • Hasan, M., Rahman, M., Faruque, M.R.I., Islam, M.T., Khandaker, M.U.: Electrically compact SRR-loaded metamaterial inspired quad-band antenna for Bluetooth/WiFi/WLAN/WiMAX system. Electronics 8(7), 790 (2019)

    Article  Google Scholar 

  • He, X., Yan, S., Lu, G., Zhang, Q., Wu, F., Jiang, J.: An ultra-broadband polarization-independent perfect absorber for the solar spectrum. RSC Adv. 5(76), 61955–61959 (2015)

    Article  ADS  Google Scholar 

  • Hossain, M.J., Faruque, M.R.I., Ahmed, M.R., Alam, M.J., Islam, M.T.: Polarization-insensitive infrared-visible perfect metamaterial absorber and permittivity sensor. Results Phys. 14, 102429 (2019a)

    Article  Google Scholar 

  • Hossain, M.J., Faruque, M.R.I., Islam, M.T.: Correction: perfect metamaterial absorber with high fractional bandwidth for solar energy harvesting. PLoS ONE 14(1), e0211751 (2019b)

    Article  Google Scholar 

  • Khan, A.D., Khan, A.D., Khan, S.D., Noman, M.: Light absorption enhancement in tri-layered composite metasurface absorber for solar cell applications. Opt. Mater. 84, 195–198 (2018a)

    Article  ADS  Google Scholar 

  • Khan, A.D., Iqbal, J., ur Rehman, S.: Polarization-sensitive perfect plasmonic absorber for thin-film solar cell application. Appl. Phys. A 124(9), 1–9 (2018)

    Article  Google Scholar 

  • Kumar, R., Singh, B.K., Pandey, P.C.: Study of gallium arsenide based perfect metamaterial absorber in the broadband region. In: IEEE 17th India Council International Conference (INDICON), pp. 1–4 (2020)

  • Landy, N.I., Sajuyigbe, S., Mock, J.J., Smith, D.R., Padilla, W.J.: Perfect metamaterial absorber. Phys. Rev. Lett. 100(20), 207402 (2008)

    Article  ADS  Google Scholar 

  • Li, C., Xiao, Z., Ling, X., Zheng, X.: Broadband visible metamaterial absorber based on a three-dimensional structure. Waves Random Complex Media 29(3), 403–412 (2019)

    Article  ADS  Google Scholar 

  • Li, H., Hu, Y., Yang, Y., Zhu, Y.: Theoretical investigation of broadband absorption enhancement in a-Si thin-film solar cell with nanoparticles. Sol. Energy Mater. Sol. Cells 211, 110529 (2020)

    Article  Google Scholar 

  • Liu, N., Mesch, M., Weiss, T., Hentschel, M., Giessen, H.: Infrared perfect absorber and its application as plasmonic sensor. Nano Lett. 10(7), 2342–2348 (2010)

    Article  ADS  Google Scholar 

  • Liu, K., Jiang, S., Ji, D., Zeng, X., Zhang, N., Song, H., Xu, Y., Gan, Q.: Super absorbing ultraviolet metasurface. IEEE Photon. Technol. Lett. 27(14), 1539–1542 (2015)

    Article  ADS  Google Scholar 

  • Mahmud, M., Islam, M.T., Misran, N., Singh, M.J., Mat, K.: A negative index metamaterial to enhance the performance of miniaturized UWB antenna for microwave imaging applications. Appl. Sci. 7(11), 1149 (2017)

    Article  Google Scholar 

  • Mahmud, S., Islam, S.S., Mat, K., Chowdhury, M.E., Rmili, H., Islam, M.T.: Design and parametric analysis of a wide-angle polarization-insensitive metamaterial absorber with a star shape resonator for optical wavelength applications. Results Phys. 18, 103259 (2020)

    Article  Google Scholar 

  • Maier, T., Brueckl, H.: Multispectral microbolometers for the midinfrared. Opt. Lett. 35(22), 3766–3768 (2010)

    Article  ADS  Google Scholar 

  • Mehrabi, M., Rajabalipanah, H., Abdolali, A., Tayarani, M.: Polarization-insensitive, ultra-broadband, and compact metamaterial-inspired optical absorber via wide-angle and highly efficient performances. Appl. Opt. 57(14), 3693–3703 (2018)

    Article  ADS  Google Scholar 

  • Melik, R., Unal, E., Perkgoz, N.K., Puttlitz, C., Demir, H.V.: Metamaterial-based wireless strain sensors. Appl. Phys. Lett. 95(1), 011106 (2009)

    Article  ADS  Google Scholar 

  • Mulla, B., Sabah, C.: Perfect metamaterial absorber design for solar cell applications. Waves Random Complex Media 25(3), 382–392 (2015)

    Article  ADS  Google Scholar 

  • Mulla, B., Sabah, C.: Multi-band metamaterial absorber design based on plasmonic resonances for solar energy harvesting. Plasmonics 11(5), 1313–1321 (2016)

    Article  Google Scholar 

  • Mulla, B., Sabah, C.: Multi-band metamaterial absorber topology for infrared frequency regime. Physica E 86, 44–51 (2017)

    Article  ADS  Google Scholar 

  • Palik, E.D.: Handbook of Optical Constants of Solids, vol. 3. Academic Press, New York (1998)

    Google Scholar 

  • Rakic, A.D.: Algorithm for the determination of intrinsic optical constants of metal films: application to aluminium. Appl. Opt. 34(22), 4755–4767 (1995)

    Article  ADS  Google Scholar 

  • Rakic, A.D., Djurisic, A.B., Elazar, J.M., Majewski, M.L.: Optical properties of metallic films for vertical-cavity optoelectronic devices. Appl. Opt. 37(22), 5271–5283 (1998)

    Article  ADS  Google Scholar 

  • Rufangura, P., Sabah, C.: Polarization angle insensitive dual-band perfect metamaterial absorber for solar cell applications. Phys. Status Solidi C 12(911), 1241–1245 (2015)

    Article  ADS  Google Scholar 

  • Rufangura, P., Sabah, C.: Polarisation insensitive tunable metamaterial perfect absorber for solar cells applications. IET Optoelectron. 10(6), 211–216 (2016a)

    Article  Google Scholar 

  • Rufangura, P., Sabah, C.: Wide-band polarization-independent perfect metamaterial absorber based on concentric rings topology for solar cells application. J. Alloy Compd. 680, 473–479 (2016b)

    Article  Google Scholar 

  • Rufangura, P., Sabah, C.: Graphene-based wideband metamaterial absorber for solar cells application. J. Nanophotonics 11(3), 036008 (2017)

    Article  ADS  Google Scholar 

  • Rufangura, P., Sabah, C.: Perfect metamaterial absorber for applications in sustainable and high-efficiency solar cells. J. Nanophoton. 12(2), 026002 (2018)

    Article  ADS  Google Scholar 

  • Shalaev, V.M., Cai, W., Chettiar, U.K., Yuan, H.K., Sarychev, A.K., Drachev, V.P., Kildishev, A.V.: Negative index of refraction in optical metamaterials. Opt. Lett. 30(24), 3356–3358 (2005)

    Article  ADS  Google Scholar 

  • Shemelya, C., DeMeo, D., Latham, N.P., Wu, X., Bingham, C., Padilla, W., Vandervelde, T.E.: Stable high temperature metamaterial emitters for thermophotovoltaic applications. Appl. Phys. Lett. 104(20), 201113 (2014)

    Article  ADS  Google Scholar 

  • Shoshi, A., Brückl, H., Reichl, W., Niessner, G., Maier, T.: B4. 1-wavelength-selective metamaterial absorber for thermal detectors. In: Proceedings SENSOR 2015, pp. 251–256 (2015).

  • Smith, D.R., Padilla, W.J., Vier, D.C., Nemat-Nasser, S.C., Schultz, S.: Composite medium with simultaneously negative permeability and permittivity. Phys. Rev. Lett. 84(18), 4184 (2000)

    Article  ADS  Google Scholar 

  • Wang, H., Wang, L.: Plasmonic light trapping in an ultrathin photovoltaic layer with film-coupled metamaterial structures. AIP Adv. 5(2), 027104 (2015)

    Article  ADS  Google Scholar 

  • Wu, C., Neuner, B., III., John, J., Milder, A., Zollars, B., Savoy, S., Shvets, G.: Metamaterial-based integrated plasmonic absorber/emitter for solar thermo-photovoltaic systems. J. Opt. 14(2), 024005 (2012)

    Article  ADS  Google Scholar 

  • Wu, S., Ye, Y., Luo, M., Chen, L.: Ultrathin omnidirectional, broadband visible absorbers. JOSA B 35(8), 1825–1828 (2018)

    Article  ADS  Google Scholar 

  • Wu, P., Zhang, C., Tang, Y., Liu, B., Lv, L.: A perfect absorber based on similar Fabry-Perot four-band in the visible range. Nanomaterials 10(3), 488 (2020)

    Article  Google Scholar 

  • Yadav, V.S., Ghosh, S.K., Bhattacharyya, S., Das, S.: Graphene-based metasurface for a tunable broadband terahertz cross-polarization converter over a wide angle of incidence. Appl. Opt. 57(29), 8720–8726 (2018)

    Article  ADS  Google Scholar 

  • Yin, X., Long, C., Li, J., Zhu, H., Chen, L., Guan, J., Li, X.: Ultra-wideband microwave absorber by connecting multiple absorption bands of two different-sized hyperbolic metamaterial waveguide arrays. Sci. Rep. 5(1), 1–8 (2015a)

    Article  Google Scholar 

  • Yin, X., Chen, L., Li, X.: Ultra-broadband super light absorber based on multi-sized tapered hyperbolic metamaterial waveguide arrays. J. Lightwave Technol. 33(17), 3704–10 (2015b)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

One of the authors (Raj Kumar) is thankful to The University Grants Commission (UGC), India for providing the senior research fellowship. Bipin K. Singh is thankful to The University Grants Commission (UGC), India, for providing financial support in the form of Dr. D. S. Kothari Postdoctoral Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Praveen C. Pandey.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, R., Singh, B.K., Tiwari, R.K. et al. Perfect selective metamaterial absorber with thin-film of GaAs layer in the visible region for solar cell applications. Opt Quant Electron 54, 416 (2022). https://doi.org/10.1007/s11082-022-03798-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-022-03798-2

Keywords

Navigation