Skip to main content

Advertisement

Log in

Overcoming the temperature effect on a single junction and intermediate band solar cells using an optical filter and energy selective contacts

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

The primary purpose of the paper is to reduce the impact of ambient temperature and internally generated heat on power conversion efficiency in solar cells. To this end, we design a simple layered structure using SiO2, Si3N4, and Si as an optical filter in front of the solar cell. To demonstrate the capability of the proposed structure, the Si and SiC Solar cells are considered and power conversion capabilities for these systems with and without the optical filter are evaluated. Finally, enhancement in power conversion efficiency and other characteristics of the proposed device is studied. It should mention that the Intermediate Band Solar Cells for this study are considered that be suitable cases in this field. In this case, to reduce the internally generated heat, we use a novel method for extracting the hot carrier from different energy levels by using multi-level Energy Selective Contacts. Such contacts promote Efficiency and break the Shockley–Queisser limit. Also, the proposed multilayer structure is used to reduce the effect of the ambient temperature. Using the proposed idea, it is shown that the power conversion efficiency is approximately constant for 300 to 800 °K.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Bhatnagar, M., Baliga, B.J.: Comparison of 6H-SiC, 3C-SiC, and Si for power devices. IEEE Trans. Electron Devices 40, 645–655 (1993)

    Article  ADS  Google Scholar 

  • Conibeer, G.J., Jiang, C.W., König, D., Shrestha, S., Walsh, T., Green, M.A.: Selective energy contacts for hot carrier solar cells. Thin Solid Films 516(20), 6968–6973 (2008)

    Article  ADS  Google Scholar 

  • El-Shaer, A., Tadros, M.T.Y., Khalifa, M. A.: Effect of light intensity and temperature on crystalline silicon solar modules parameters. Int. J. Emerg. Technol. Adv. Eng. www.ijetae.com (ISSN 2250-2459, ISO 9001:2008 Certified Journal, Volume 4, Issue 8, August 2014)

  • Eskandari, M., Rostami, G., Dolatyari, M., Rostami, A., Heidarzadeh, H.: Optimization of power conversion efficiency in multi-band solar cells (theoretical investigation using GA optimization). Opt. Quant. Electron. 53(8), 1–10 (2021)

    Article  Google Scholar 

  • Foster, R., Ghassemi, M., Cota, A.: Solar Energy-Renewable Energy and the Environment. Taylor and Francis Group, Boca Raton (2010)

    Google Scholar 

  • Green, M.A.: Third-Generation Photovoltaic: Advanced Solar Energy Conversion, vol. 12. Springer, Berlin (2006)

    Google Scholar 

  • Heidarzadeh, H., Rostami, A., Dolatyari, M., Rostami, G.: Design criteria for silicon nanostructures in silicon-based triple-junction solar cell. Opt. Quant. Electron. 48(11), 1–13 (2016)

    Article  Google Scholar 

  • Heidarzadeh, H., Rostami, A., Dolatyari, M.: Management of losses (thermalization-transmission) in the Si-QDs inside 3C–SiC to design an ultra-high-efficiency solar cell. Mater. Sci. Semicond. Process. 109, 1–9 (2020)

    Article  Google Scholar 

  • Luque, A., Hegedus, S.: Handbook of Photovoltaic Science and Engineering. John Wiley and Sons (2003)

    Book  Google Scholar 

  • Luque, A., Marti, A.: Increasing the efficiency of ideal solar cells by photon-induced transitions at intermediate levels. Phys. Rev. Lett. 78(26), 5014–5017 (1997)

    Article  ADS  Google Scholar 

  • Pejova, B., Abay, B., Bineva, I.: Temperature dependence of the band-gap energy and sub-band-gap absorption tails in strongly quantized ZnSe nanocrystals deposited as thin films. J. Phys. Chem. C114(36), 15280–15289 (2010)

    Google Scholar 

  • Ray, K.L.: Photovoltaic cell efficiency at elevated temperature, Massachusetts institute of technology June (2010)

  • Ross, R.T., Nozik, A.J.: The efficiency of hot carrier solar energy converters. J. Appl. Phys. 53(5), 3813–3818 (1982)

    Article  ADS  Google Scholar 

  • Shockley, W., Queisser, H.J.: Detailed balance limit of efficiency of p-n junction solar cells. J. Appl. Phys. 32(3), 510–519 (1961)

    Article  ADS  Google Scholar 

  • Shrestha, S.K., Aliberti, P., Conibeer, G.J.: Energy selective contacts for hot carrier solar cells. Sol. Energy Mater. Sol. Cells 94(9), 1546–1550 (2010)

    Article  Google Scholar 

  • Singh, P., Ravindra, N.M.: The temperature dependence of solar cell performance an analysis. Sol. Energy Mater. Sol. Cells 101(2012), 36–45 (2012)

    Article  Google Scholar 

  • Skoplaki, E., Palyvos, J.A.: On the temperature dependence of photovoltaic module electrical performance: a review of efficiency, power correlations. Sol. Energy Mater. Sol. Cells 83, 614–624 (2009)

    Google Scholar 

  • Van Dyk, E.E., et al.: Temperature-dependent performance of crystalline silicon photovoltaic modules. S. Afr. J. Sci. 96, 198–200 (2000)

    Google Scholar 

  • Yeh, P.: Optical Wave in Layered Media, A Wiley-Inter science Publication, 0471731927 (2005)

  • Zardari, P., Rostami, A.: Construction of 1D perovskite nanowires by Urotropin passivation towards efficient and stable perovskite solar cell. Sol. Energy Mater. Sol. Cells 227, 1–10 (2021)

    Article  Google Scholar 

  • Zhou, W., Yang, H., Fang, Z.: A novel model for photovoltaic array performance prediction. Appl. Energy 84(12), 1187–1189 (2007)

    Article  Google Scholar 

Download references

Funding

A funding declaration is mandatory for publication in this journal. Please confirm that this declaration is accurate, or provide an alternative.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Rostami.

Ethics declarations

Competing interests

A competing interests declaration is mandatory for publication in this journal. Please confirm that this declaration is accurate, or provide an alternative.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: Transfer matrix method (TMM)

Appendix: Transfer matrix method (TMM)

Using the TMM method, the reflection and transmission coefficients are calculated easily. To model the structure, a 2 × 2 boundary matrix \(D_{1}\), and a 2 × 2 diffusion matrix \(P_{1}\), are defined for each layer as:

$$ D_{1} = \left[ {\begin{array}{*{20}l} 1 \hfill & 1 \hfill \\ {n_{1} \cos \theta_{1} } \hfill & {n_{2} \cos \theta_{2} } \hfill \\ \end{array} } \right] $$
(15)
$$ P_{1} = \left[ {\begin{array}{*{20}l} {e^{ - i\varphi } } \hfill & 0 \hfill \\ 0 \hfill & {e^{i\varphi } } \hfill \\ \end{array} } \right] $$
(16)

where \(n_{1}\),\(n_{2}\), \(\theta_{1}\), \(\theta_{2}\), and \(\varphi\) are refractive indices, the angle of incident and reflected components, and the propagation phase through the thin film respectively the phase is given by:

$$ \varphi = \frac{2\pi nd}{A}\cos \theta $$
(17)

The resultant matrix is defined as follows by the product of these individual matrices.

$$ \left( {\begin{array}{*{20}l} {M_{11} } \hfill & {M_{12} } \hfill \\ {M_{21} } \hfill & {M_{22} } \hfill \\ \end{array} } \right) = D_{0}^{ - 1} \left[ {\prod\limits_{l = 1}^{N} {D_{l} P_{l} D_{l}^{ - 1} } } \right]D_{s} $$
(18)

where the elements of the matrix for a two-layer system are written as:

$$ M_{11} = \frac{1}{2}\left( {1 + \frac{{n_{3} \cos \theta_{3} }}{{n_{1} \cos \theta_{1} }}} \right)\hbox{cos}\varphi + \frac{1}{2}i\hbox{sin}\varphi \left( {\frac{{n_{2} \cos \theta_{2} }}{{n_{1} \cos \theta_{1} }} - \frac{{n_{3} \cos \theta_{3} }}{{n_{2} \cos \theta_{2} }}} \right) $$
(19)
$$ M_{12} = \frac{1}{2}\left( {1 - \frac{{n_{3} \cos \theta_{3} }}{{n_{1} \cos \theta_{1} }}} \right)\hbox{cos}\varphi + \frac{1}{2}i\hbox{sin}\varphi \left( {\frac{{n_{2} \cos \theta_{2} }}{{n_{1} \cos \theta_{1} }} - \frac{{n_{3} \cos \theta_{3} }}{{n_{2} \cos \theta_{2} }}} \right) $$
(20)
$$ M_{21} = \frac{1}{2}\left( {1 - \frac{{n_{3} \cos \theta_{3} }}{{n_{1} \cos \theta_{1} }}} \right)\hbox{cos}\varphi - \frac{1}{2}i\hbox{sin}\varphi \left( {\frac{{n_{2} \cos \theta_{2} }}{{n_{1} \cos \theta_{1} }} - \frac{{n_{3} \cos \theta_{3} }}{{n_{2} \cos \theta_{2} }}} \right) $$
(21)
$$ M_{22} = \frac{1}{2}\left( {1 + \frac{{n_{3} \cos \theta_{3} }}{{n_{1} \cos \theta_{1} }}} \right)\hbox{cos}\varphi - \frac{1}{2}i\hbox{sin}\varphi \left( {\frac{{n_{2} \cos \theta_{2} }}{{n_{1} \cos \theta_{1} }} - \frac{{n_{3} \cos \theta_{3} }}{{n_{2} \cos \theta_{2} }}} \right) $$
(22)

The transmission and reflection coefficients are calculated as follows.

$$ T = \frac{1}{{M_{11} }} $$
(23)
$$ R = \frac{{M_{21} }}{{M_{11} }} $$
(24)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vahedi, S., Eskandari, M., Barzinjy, A.A. et al. Overcoming the temperature effect on a single junction and intermediate band solar cells using an optical filter and energy selective contacts. Opt Quant Electron 54, 374 (2022). https://doi.org/10.1007/s11082-022-03764-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-022-03764-y

Keywords

Navigation