Skip to main content
Log in

Unsupervised learning method for events identification in φ-OTDR

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

In this paper, an unsupervised-learning method for events-identification in φ-OTDR fiber-optic distributed vibration sensor is proposed. The different vibration-events including blowing, raining, direct and indirect hitting, and noise-induced false vibration are clustered by the k-means algorithm. The equivalent classification accuracy of 99.4% has been obtained, compared with the actual classes of vibration-events in the experiment. With the cluster-number of 3, the maximal Calinski-Harabaz index and Silhouette coefficient are obtained as 2653 and 0.7206, respectively. It is found that our clustering method is effective for the events-identification of φ-OTDR without any prior labels, which provides an interesting application of unsupervised-learning in self-classification of vibration-events for φ-OTDR.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abufana, S.A., Dalveren, Y., Aghnaiya, A., Kara, A.: variational mode decomposition-based threat classification for fiber optic distributed acoustic sensing. IEEE Access 8, 100152–100158 (2020)

    Article  Google Scholar 

  • Arthur D, Vassilvitskii S. “k-means++: The advantages of careful seeding,” Stanford, (2006)

  • Cao C., Fan X., Liu Q., He Z.: practical pattern recognition system for distributed optical fiber intrusion monitoring system based on phase-sensitive coherent OTDR,” Asia Communications and Photonics Conference 2015 OSA Technical Digest pp. 145, (2015)

  • Che, Q., Wen, H., Li, X., et al.: Partial discharge recognition based on optical fiber distributed acoustic sensing and a convolutional neural network. IEEE Access 7, 101758–101764 (2019)

    Article  Google Scholar 

  • Hu, Y., Meng, Z., Ai, X., Li, H., Hu, Y., Zhao, H.: Hybrid feature extraction of pipeline microstates based on φ-OTDR sensing system. J. Control Sci. Eng. 2019(1), 1–10 (2019)

    Article  Google Scholar 

  • Jia, H., Liang, S., Lou, S., Sheng, X.: A k-nearest neighbor algorithm-based near category support vector machine method for event identification of φ-OTDR. IEEE Sens. J. 19(10), 3683–3689 (2019)

    Article  ADS  Google Scholar 

  • Jia, H., Lou, S., Liang, S., Sheng, X.: Event identification by F-ELM Model for φ-OTDR fiber-optic distributed disturbance sensor. IEEE Sens. J. 20(3), 1297–1305 (2020)

    Article  ADS  Google Scholar 

  • Jiang, J., Wang, Z., Wang, Z., Wu, Y., Lin, S., Xiong, J., Chen, Y., Rao, Y.: Coherent kramers-kronig receiver for φ-OTDR. J. Lightwave Technol. 37(18), 4799–4807 (2019)

    Article  ADS  Google Scholar 

  • Kowarik, S., Hussels, M., Chruscicki, S., Münzenberger, S., Lämmerhirt, A., Pohl, P., Schubert, M.: Fiber optic train monitoring with distributed acoustic sensing: conventional and neural network data analysis. Sensors 20(2), 450 (2020)

    Article  ADS  Google Scholar 

  • Li, Z., Zhang, J., Wang, M., Zhong, Y., Peng, F.: Fiber distributed acoustic sensing using convolutional long short-term memory network: a field test on high-speed railway intrusion detection. Opt. Express 28(3), 2925–2938 (2020)

    Article  ADS  Google Scholar 

  • Liang, S., Zhao, X., Liu, R., Zhang, X., Wang, L., Zhang, X., Lv, Y., Meng, F.: Fiber-optic auditory nerve of ground in the suburb: for traffic flow monitoring. IEEE Access 7, 166704–166710 (2019)

    Article  Google Scholar 

  • Liehr, S., Jäger, L.A., Karapanagiotis, C., Münzenberger, S., Kowarik, S.: Real-time dynamic strain sensing in optical fibers using artificial neural networks. Opt. Express 27(5), 7405–7425 (2019)

    Article  ADS  Google Scholar 

  • Liu, H., Ma, J., Yan, W., Liu, W., Zhang, X., Li, C.: Traffic flow detection using distributed fiber optic acoustic sensing. IEEE Access 6, 68968–68980 (2018)

    Article  Google Scholar 

  • Liu L., Wang Q., Dong M., Zhang Z., Li Y., Wang Z., Wang Z.S.: Application of ++ Algorithm Based on t-SNE Dimension Reduction in Transformer District Clustering, 2020 Asia Energy and Electrical Engineering Symposium (AEEES). IEEE, 2020: 74–78

  • Liu, H., Ma, J., Xu, T., Yan, W., Ma, L., Zhang, X.: Vehicle detection and classification using distributed fiber optic acoustic sensing. IEEE Trans. Veh. Technol. 69(2), 1363–1374 (2020)

    Article  Google Scholar 

  • Liu, T., Li, H., He, T., Fan, C.Z., Yan, Z.J., Liu, D.M., Sun, Q.Z.: Ultra-high resolution strain sensor network assisted with an LS-SVM based hysteresis model. Opto-Electr. Adv. 4(5), 200037 (2021)

    Article  Google Scholar 

  • Lu, Y., Zhu, T., Chen, L., Bao, X.: Distributed vibration sensor based on coherent detection of phase-OTDR. J. Lightwave Technol. 28(22), 3243–3249 (2010)

    ADS  Google Scholar 

  • Lyu, C., Jiang, J., Li, B., Huo, Z., Yang, J.: Abnormal events detection based on RP and inception network using distributed optical fiber perimeter system. Opt. Lasers Eng. 137, 106377–106384 (2021)

    Article  Google Scholar 

  • Ma, P., Liu, K., Jiang, J., Li, Z., Li, P., Liu, T.: Probabilistic event discrimination algorithm for fiber optic perimeter security systems. J. Lightwave Technol. 36(11), 2069–2075 (2018)

    Article  ADS  Google Scholar 

  • Marcon, L., Soriano-Amat, M., Veronese, R., Garcia-Ruiz, A., Calabrese, M., Costa, L., Fernandez-Ruiz, M., Martins, H., Palmieri, L., Gonzalez-Herraez, M.: Analysis of disturbance-induced “virtual” perturbations in chirped pulse φ-OTDR. IEEE Photonics Technol. Lett. 32(3), 158–161 (2019)

    Article  ADS  Google Scholar 

  • Peng, F., Duan, N., Rao, Y., Li, J.: Real-time position and speed monitoring of trains using phase-sensitive OTDR. IEEE Photonics Technol. Lett. 26(20), 2055–2057 (2014a)

    Article  ADS  Google Scholar 

  • Peng, F., Wu, H., Jia, X., Rao, Y., Wang, Z., Peng, Z.: Ultra-long high-sensitivity φ-OTDR for high spatial resolution intrusion detection of pipelines. Opt. Express 22(11), 13804–13810 (2014b)

    Article  ADS  Google Scholar 

  • Peng, Z., Jian, J., Wen, H., Gribok, A., Wang, M., Liu, H., Huang, S., Mao, Z., Chen, K.P.: Distributed fiber sensor and machine learning data analytics for pipeline protection against extrinsic intrusions and intrinsic corrosions. Opt. Express 28(19), 27277–27292 (2020)

    Article  ADS  Google Scholar 

  • Peng Z., Jian J., Wang M., Wang Q., Boyer T., Wen H., Liu H., Mao Z., Chen K. P.: Big Data Analytics on Fiber-Optical Distributed Acoustic Sensing with Rayleigh Enhancements, Proc. 2019 IEEE Photonics Conference (IPC), San Antonio, TX, USA, pp. 1–3, (2019)

  • Shi, Y., Wang, Y., Zhao, L., Fan, Z.: An event recognition method for φ-OTDR sensing system based on deep learning. Sensors 19(15), 3421 (2019)

    Article  ADS  Google Scholar 

  • Shiloh, L., Eyal, A., Giryes, R.: Efficient processing of distributed acoustic sensing data using a deep learning approach. J. Lightwave Technol. 37(18), 4755–4762 (2019)

    Article  ADS  Google Scholar 

  • Sun, Q., Li, Q., Chen, L., Quan, J., Li, L.: Pattern recognition based on pulse scanning imaging and convolutional neural network for vibrational events in φ-OTDR. Optik 219, 165205 (2020)

    Article  ADS  Google Scholar 

  • Sun Z., Kun L., Jiang J., Xu T., Wang S., Hairuo G., Zhou Z., Kang X., Huang Y., T. Liu: Optical fiber distributed vibration sensing using grayscale image and multi-class deep learning framework for multi-event recognition,” IEEE Sens. J., (2021)

  • Tabi. Fouda B.M., Han D., An B., Chen X.: Research and software design of an Φ-OTDR-based optical fiber vibration recognition algorithm[J],” J. Electr. Comput. Eng. (2020)

  • Wang Z., Lu B., Zheng H., Ye Q., Pan Z., Cai H., Qu R., Fang Z., Zhao H.: Novel railway-subgrade vibration monitoring technology using phase-sensitive OTDR, 2017 25th Optical Fiber Sensors Conference (OFS). IEEE, 2017: 1–4

  • Wang, X., Liu, Y., Liang, S., Zhang, W., Lou, S.: Event identification based on random forest classifier for φ-OTDR fiber-optic distributed disturbance sensor. Infrared Phys. Technol. 97, 319–325 (2019)

    Article  ADS  Google Scholar 

  • Wang, P., Lv, Y., Wang, Y., Liu, X., Bai, Q., Zhang, H., Jin, B.: Adaptability and anti-noise capacity enhancement for ϕ-OTDR With deep learning. J. Lightwave Technol. 38(23), 6699–6706 (2020a)

    Article  ADS  Google Scholar 

  • Wang, Z., Lou, S., Wang, X., Liang, S., Sheng, X.: Multi-branch long short-time memory convolution neural network for event identification in fiber-optic distributed disturbance sensor based on φ-OTDR. Infrared Phys. Technol. 109, 103414 (2020b)

    Article  Google Scholar 

  • Wang, Z., Lou, S., Liang, S., Sheng, X.: Multi-class disturbance events recognition based on EMD and XGBoost in φ-OTDR. IEEE Access 99, 63551–63558 (2020c)

    Article  Google Scholar 

  • Wen H., Peng Z., Jian J. et al.: Artificial intelligent pattern recognition for optical fiber distributed acoustic sensing systems based on phase-OTDR,” 2018 Asia Communications and Photonics Conference (ACP). IEEE (2018), 1–4

  • Wu, H., Liu, X., Xiao, Y., Rao, Y.: A dynamic time sequence recognition and knowledge mining method based on the hidden markov models (HMMs) for pipeline safety monitoring With φ-OTDR. J. Lightwave Technol. 37(19), 4991–5000 (2019)

    Article  ADS  Google Scholar 

  • Wu, H., Yang, M., Yang, S., Lu, H., Wang, C., Rao, Y.: A novel DAS signal recognition method based on spatiotemporal information extraction with 1DCNNs-BiLSTM network. IEEE Access 8, 119448–119457 (2020)

    Article  Google Scholar 

  • Xu, C., Guan, J., Bao, M., Lu, J., Ye, W.: Pattern recognition based on time-frequency analysis and convolutional neural networks for vibrational events in φ-OTDR. Opt. Eng. 57(1), 016103 (2018)

    Article  ADS  Google Scholar 

  • Yue, H., Zhang, B., Wu, Y., Zhao, B., Li, J., Ou, Z., Liu, Y.: Simultaneous and signal-to-noise ratio enhancement extraction of vibration location and frequency information in phase-sensitive optical time domain reflectometry distributed sensing system. Opt. Eng. 54(4), 047101 (2015)

    Article  Google Scholar 

  • Zhang, M., Li, Y., Chen, J., Song, Y., Zhang, J., Wang, M.: Event detection method comparison for distributed acoustic sensors using φ-OTDR. Opt. Fiber Technol. 52, 101980–101986 (2019)

    Article  Google Scholar 

  • Zhu, T., Xiao, X., He, Q., Diao, D.: Enhancement of SNR and Spatial Resolution in φ-OTDR System by Using Two-Dimensional Edge Detection Method. J. Lightwave Technol. 31(17), 2851–2856 (2013)

    Article  ADS  Google Scholar 

  • Zuo, J., Zhang, Y., Xu, H., Zhu, X., Zhao, Z., Wei, X., Wang, X.: Pipeline leak detection technology based on distributed optical fiber acoustic sensing system. IEEE Access 8, 30789–30796 (2020)

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the Fundamental Research Funds for the Central Universities (2019JBM345), the Beijing Natural Science Foundation (4192047).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sheng Liang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, J., Zhao, X., Zhao, Y. et al. Unsupervised learning method for events identification in φ-OTDR. Opt Quant Electron 54, 457 (2022). https://doi.org/10.1007/s11082-022-03748-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-022-03748-y

Keywords

Navigation