Skip to main content
Log in

Analysis of distortion reduction in tunnel injection transistor laser using feedback Schottky diode

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

In this present work the intermodulation distortions in Tunnel Injection Transistor Laser (TI-TL) is analyzed and its reduction is evaluated by using Schottky diode based feedback techniques. Rate equations are used to model the TI-TL and they are numerically solved by using fourth order Runge-Kutta method. The number of components used in this distortion reduction scheme is less when compared with the existing schemes. Maximum modulation depth and minimum distortion are obtained at a tunneling probability of 0.6. It provides a bandwidth and modulation depth of 17.6 GHz and 0.85 respectively at a bias current of 2IBth. An improvement of 4.64 dB and 1.91 dB are obtained for IMD3 and IMD5 under second harmonic injection technique. In case of Schottky diode based feedback scheme, a reduction of 8.21 dB and 2.1 dB are obtained. Further, SFDR of 80.43 dB Hz2/3 and 82.6 dB Hz2/3 are obtained for second harmonic injection and Schottky diode feedback schemes respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  • Aitchison, C.S., Mbabele, M., Moazzam, M.R., Budimir, D., Ali, F.: Improvement of third-order intermodulation product of RF and microwave amplifiers by injection. IEEE Trans. Microw. Theory Tech. 49(6), 1148–1154 (2001)

    Article  ADS  Google Scholar 

  • Basu, R., Mukhopadhyay, B., Basu, P.K: Estimated threshold base current and light power output of a transistor laser with InGaAs quantum well in GaAs base., Semiconductor. Sci. Technol. 26, 105014 (2011)

  • Beomhoan, O., Heung-Ro Choo, Hyung Mun Kim, Soon-Ryong Park, Jeong Soo Kim: SCH dependence of linewidth enhancement factor for high-speed 1.55-um multiple quantum well laser diodes. In Current Developments in Optical Design and Engineering VII, vol. 3429, pp. 139–146. SPIE (1998)

  • Bhattacharya, P., Singh, J., Yoon, H., Zhang, X., Gutierrez-Aitken, A., Lam, Y.: Tunneling injection lasers: a new class of lasers with reduced hot carrier effects. IEEE J. Quant. Electron. 32(9), 1620–1629 (1996). https://doi.org/10.1109/3535367

  • Chen, Y., Wartak, M.S., Lu, H., Makino, T.: Investigation of carrier transport effects in multiquantum well lasers. J. Appl. Phys. 78(9), 5515–5517 (1995). https://doi.org/10.1063/1.359669

  • Cox, C.H., Ackerman, E.I., Betts, G.E., Prince, J.L.: Limits on the performance of RF over fiber links and their impact on device design. IEEE Trans. Microw. Theory Tech. 54, 906–920 (2006). https://doi.org/10.1109/TMTT.2005.863818

    Article  ADS  Google Scholar 

  • Davenport, M.L., Skendzic, S., Volet, N., Hulme, J.C., Heck, M.J.R., Bowers, J.E.: Heterogeneous Silicon/III–V Semiconductor Optical Amplifiers. IEEE J. Selected Topics Quant. Electr. 22(6), 78–88 (2016). https://doi.org/10.1109/JSTQE.2016.2593103

    Article  ADS  Google Scholar 

  • Fernando, X.N.: Radio over Fiber for Wireless Communications: From Fundamentals to Advanced Topics. Radio over Fiber for Wireless Communications: From Fundamentals to Advanced Topics. 1–252 (2014). https://doi.org/10.1002/9781118797051

  • Higa, Y., Miyamoto, T., Nakajima, H., Fujimoto, K., Koyamo, F.: Theoretical design of carrier injection rate and recombination rate in tunnel injection quantum well lasers. Phys. Stat. Sol. 5(9), 2838–2840 (2008). https://doi.org/10.1002/pssc.200779218

  • Holonyak, N., Feng, M.: The transistor laser. IEEE Spectrum 43(2), 50–55 (2006). https://doi.org/10.1109/MSPEC.2006.1584362

    Article  Google Scholar 

  • Kaur, J., Basu, R., Sharma, A.K.: Effect of separate confinement heterostructure in tunnel injection transistor laser based transmitter for high speed optical communication networks. Opt. Laser Technol. 115, 268–279 (2019). https://doi.org/10.1016/j.optlastec.2019.02.038

    Article  ADS  Google Scholar 

  • Kucharczyk, M., Wartak, M.S., Weetman, P., Lau, P.K.: Theoretical modeling of multiple quantum well lasers with tunneling injection and tunneling transport between quantum wells. J. Appl. Phys. 86(6), 3218–3228 (1999). https://doi.org/10.1063/1.371193

  • Kumar, N., Mukhopadhyay, B., Basu, R.: Tunnel injection transistor laser for optical interconnects. Opt. Quant. Electron. 50, 160 (1–12) (2018). https://doi.org/10.1007/s11082-018-1412-5

  • Lee, T.K., Moon, Y.T., Kim, H.S., Choi, Y.W.: Theoretical analysis and realization of optoelectrical predistortion optical transmitter for the simultaneous suppression of IM3 and IM5 signal. Opt. Commun. 285, 2697–2701 (2012). https://doi.org/10.1016/j.optcom.2012.02.006

    Article  ADS  Google Scholar 

  • Piramasubramanian, S., Madhan, M.G.: A novel distortion reduction scheme for multiple quantum well gain lever laser diodes. J. Opt. 15, 055501(1–8) (2013). https://doi.org/10.1088/2040-8978/15/5/055501

  • Piramasubramanian, S., Madhan, M.G.: Simultaneous reduction of IMD3 and IMD5 in bisection laser diode by feedback second harmonic injection. Opt. Commun. 328, 151–160 (2014). https://doi.org/10.1016/j.optcom.2014.04.048

    Article  ADS  Google Scholar 

  • Piramasubramanian, S., Madhan, M.G., Nagella, J., Dhanapriya, G.: Numerical analysis of distortion characteristics of heterojunction bipolar transistor laser. Opt. Commun. 357, 177–184 (2015). https://doi.org/10.1016/j.optcom.2015.08.086

    Article  ADS  Google Scholar 

  • Piramasubramanian, S., Madhan, M.G., Radha, V., Shajithaparveen, S.M.S., Nivetha, G.: Effect of quantum well position on the distortion characteristics of transistor laser. Opt. Commun. 414, 177–184 (2018). https://doi.org/10.1016/j.optcom.2017.12.055

    Article  Google Scholar 

  • Ranjith, R., Piramasubramanian, S., Madhan, M.G.: Distortion analysis of 1.3µm AlGaInAs/InP transistor laser, Advances in Optical Science and Engineering, Springer Proceedings in physics. Vol. 194, pp.425–432, Springer, Singapore, 2017

  • Shirao, M., Lee, S., Nishiyama, N., Arai, S.: Large signal analysis of a transistor laser. IEEE J. Quant. Electron. 47(3), 359–367 (2011). https://doi.org/10.1109/JQE.2010.2090341

    Article  ADS  Google Scholar 

  • Son, B.H., Kim, K.J., Li, Y., Park, C.I., Choi, Y.W.: Simple electrical predistortion method using Schottky diode for radio over fiber systems. IEEE Photon. Tech. Lett. 27(8), 907–910 (2015). https://doi.org/10.1109/LPT.2015.2400051

  • Then, H.W., Feng, M. & Holonyak Jr., N., The transistor laser: theory and experiment, Proc. IEEE 101 (2013) 2271–2298. https://doi.org/10.1109/JPROC2013.2274935

  • Then, H.W., Tan, F., Feng, M., Holonyak, N., Jr.: Transistor laser optical and electrical linearity enhancement with collector current feedback. Appl. Phys. Lett. 100, 221104 (1–3), 21104 (2012). https://doi.org/10.1063/1.4723874

  • Vinodhini, S.V., Piramasubramanian, S.: Effect of tunneling probability on the distortion characteristics of tunnel injection transistor laser. Opt. Commun. 460, 125127 (1–8) (2020). https://doi.org/10.1016/j.optcom.2019.125127

  • Vinodhini, S.V., Piramasubramanian, P., Ganesh Madhan, M.G., Sandhiya, M.: Analysis of distortion reduction in 1.3 μm transistor laser using Schottky diode based predistortion network. Optik 231, 166442 (1–13) (2021). https://doi.org/10.1016/j.ijleo.2021.166442

  • Vinodhini, S.V., Piramasubramanian, S., Ganesh Madhan, M.G.: Analysis of nonlinear distortion and its reduction using feedback injection schemes in 1.3 µm transistor laser. Opt. Commun. 439, 224–232 (2019). https://doi.org/10.1016/j.optcom.2019.01.065

    Article  ADS  Google Scholar 

  • Weetman, P., Wartak, M.S., Rusek, P.: Comparison of classical and tunneling injection schemes in quantum well lasers. IEEE Photon. Tech. Lett. 10(5), 648–650 (1998). https://doi.org/10.1109/68.669227

  • Zhang, X., Gutierrez-Aitken, A., Klotzkin, D., Bhattacharya, P., Caneau, C., Bhat, R.: 0.98 μ multiple quantum well tunneling injection laser with 98 GHz intrinsic modulation bandwidth, IEEE J. Sel. Topics Quant. Electron., 3(2), 309–314 (1997)

Download references

Acknowledgements

The authors gratefully acknowledge Anna University, Chennai for providing financial support to carry out this research work under Anna Centenary Research Fellowship (ACRF) scheme. One of the authors, S.V. Vinodhini is thankful to Anna University, Chennai for the award of Anna Centenary Research Fellowship [grant no.: CFR/ACRF/2018/34].

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. V. Vinodhini.

Ethics declarations

Conflict of interest

The authors have not disclosed any competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vinodhini, S.V., Piramasubramanian, S. & Madhan, M.G. Analysis of distortion reduction in tunnel injection transistor laser using feedback Schottky diode. Opt Quant Electron 54, 364 (2022). https://doi.org/10.1007/s11082-022-03746-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-022-03746-0

Keywords

Navigation