Skip to main content
Log in

Reinforcement of optical wave transmission by using two cap-layers in a multilayer structure containing nano-scale blocks

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

In a layered structure containing nano-scale layers, we have presented the possibility of increasing the wave transmission in the visible region by adding the top and bottom cap layers. It is found that, the structure containing both the top and bottom cap layers (S3) yields larger transmittance than the structures S1 without any cap or S2 just with one cap layer. The maximum transmittance in the visible range can be increased from 33% to 67%. In addition, for the TE mode (the TM mode) the maximum value of transmission in the S1 and S2 structures occurs at angles close to normal incidence while in the S3 multilayer it happens around 1 rad, that is, the behavior of the TE mode is the opposite of the TM mode. Also, when the incident angle varies, the band edges experience a blue shift. The amount of TE shift is more pronounced than TM one.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Arakawa, Y.: Progress in GaN-based quantum dots for optoelectronics applications". IEEE J. Sel. Top. Quantum Electron. 8(4), 823–832 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  • Blaber, M.G., Arnold, M.D., Ford, M.J.: Search for the ideal plasmonic nanoshell: the effects of surface scattering and alternatives to gold and silver. J. Phys. Chem. C 113(8), 3041–3045 (2009)

    Article  Google Scholar 

  • Brown, E.R., McMahan, O.B.: Large electromagnetic stop bands in metallodi-electric photonic crystals. Appl. Phys. Lett. 67(15), 2138–2140 (1995)

    Article  ADS  Google Scholar 

  • Di Carlo, A.: Tuning optical properties of GaN-based nanostructures by charge screening. Phys. Status Solidi A 183(1), 81–85 (2001)

    Article  ADS  Google Scholar 

  • Feng, S., Elson, J.M.: Diffraction-suppressed high-resolution imaging through metallodielectric nanofilms. Opt. Expr. 14(1), 216–221 (2006)

    Article  ADS  Google Scholar 

  • Feng, W., Keqiang, L., Shi, H., Manhong, Y., Shuyuan, X.: Ultra-large omnidirectional photonic band gaps in one-dimensional ternary photonic crystals composed of plasma, dielectric and hyperbolic metamaterial. Opt. Mater. 111, 110680 (2021)

    Article  Google Scholar 

  • Gao, Y., Ye, Q., Zhang, J.: Research on the moving plasma photonic crystals based on the novel symplectic finite-difference time-domain method. Optik 218, 164972 (2020)

    Article  ADS  Google Scholar 

  • Hooper, I.R., Sambles, J.R.: Dispersion of surface plasmon polaritons on short-pitch metal gratings. Phys. Rev. B 65, 165432 (2002)

    Article  ADS  Google Scholar 

  • Joannopoulos, J., Villeneuve, P., Fan, S.: Photonic crystals: putting a new twist on light. Nature 386, 143–149 (1997)

    Article  ADS  Google Scholar 

  • Keskinen, M.J., Loschialpo, P., Forester, D., Schelleng, J.: Photonic band structure and transmissivity of frequency dependent metallic-dielectric systems. J. Appl. Phys. 88, 5785–5790 (2000)

    Article  ADS  Google Scholar 

  • Lin, Y., Chou, S.H., Robust, W.J.: High-Q filter with complete transmission by conjugated topological photonic crystals. Sci Rep. 10, 7040 (2020)

    Article  ADS  Google Scholar 

  • Mao, J., Li, J., Zhou, C., Zhao, H., Sheng, H.: Optimum design of a photonic crystal filter based on a genetic algorithm used in a rotational Raman lidar. Laser Phys. 23, 026003 (2013)

    Article  ADS  Google Scholar 

  • Markos, P., Soukoulis, C.M.: Wave Propagation: From Electrons to Photonic Crystals and Left-handed Materials. Princeton University Press, New Jersey (2008)

    Book  Google Scholar 

  • McPeak, M.K., Jayanti, V.S., Kress, S.J.P., Meyer, S., Iotti, S., Rossinelli, A., Norris, D.J.: Plasmonic films can easily be better: rules and recipes. ACS Photon. 2(3), 326–333 (2015)

    Article  Google Scholar 

  • Minn, K., Birmingham, B., Ko, B., Wai, H., Lee, H., Zhang, Z.: Interfacing photonic crystal fiber with a metallic nanoantenna for enhanced light nanofocusing. Photon. Res. 9, 252–258 (2021)

    Article  Google Scholar 

  • Missoni, L.L., Ortiz, G.P., Martínez-Ricci, M.L., Toranzos, V.J., Luis-Mochán, W.: Rough 1D photonic crystals: a transfer matrix approach. Opt. Mater. 109, 110012 (2020)

    Article  Google Scholar 

  • Olthaus, J., Schrinner, P.P.J., Reiter, D.E., Schuck, C.: Optimal photonic crystal cavities for coupling nanoemitters to photonic integrated circuits. Adv. Quant. Technol. 3, 1900084 (2020)

    Article  Google Scholar 

  • Ordal, M.A., Bell, R.J., Alexander, R.W., Jr., Long, L.L., Querry, M.R.: Optical properties of fourteen metals in the infrared and far infrared: Al Co, Cu, Au, Fe, Pb, Mo, Ni, Pd, Pt, Ag, Ti, V, and W. Appl. Opt. 24, 4493–4499 (1985)

    Article  ADS  Google Scholar 

  • Palinski, T.J., Hunter, G.W., Tadimety, A., Zhang, X.J.: Metallic photonic crystal-based sensor for cryogenic environments. Opt. Express. 27, 16344–16359 (2019)

    Article  ADS  Google Scholar 

  • Park, J., Min, B.: Spatiotemporal plane wave expansion method for arbitrary space–time periodic photonic media. Opt. Lett. 46, 484–487 (2021)

    Article  ADS  Google Scholar 

  • Pendry, J.B.: Negative refraction makes a perfect lens. Phys. Rev. Lett. 85, 3966–3969 (2000)

    Article  ADS  Google Scholar 

  • Qi, Y., Liu, K., Wang, S., Chen, D., Sun, X.: Focusing characteristics of graded photonic crystal waveguide lens based on interference lithography. Opt. Eng. 60(7), 077102 (2021)

    Article  ADS  Google Scholar 

  • Ramakrishna, S.A.: Physics of negative refractive index materials. Rep. Prog. Phys. 68, 449–521 (2005)

    Article  ADS  Google Scholar 

  • Rutckaia, V., Schilling, J.: Ultrafast low-energy all-optical switching. Nat. Photonics 14, 4–6 (2020)

    Article  ADS  Google Scholar 

  • Scalora, M., Bloemer, M.J., Pethel, A.S., Dowling, J.P., Bowden, C.M., Manka, A.S.: Transparent, metallodielectric, one-dimensional, photonic band-gap structures. J. Appl. Phys. 83, 2377–2383 (1998)

    Article  ADS  Google Scholar 

  • Shen, L., He, S., Xiao, S.: A finite-difference eigenvalue algorithm for calculating the band structure of a photonic crystal. Comput. Phys. Commun. 143(3), 213–221 (2002)

    Article  ADS  Google Scholar 

  • Sigalas, M.M., Chan, C.T., Ho, K.M., Soukoulis, C.M.: Metallic photonic band-gap materials. Phys. Rev. B Condens. Matter 52(16), 11744–11751 (1995)

    Article  ADS  Google Scholar 

  • Tajik, M., Granpayeh, N.: Dielectric resonator antenna fed by photonic crystal waveguide based on silicon-on-glass technology. Opt. Eng. 59(11), 117107 (2020)

    Article  ADS  Google Scholar 

  • Takiguchi, M., Takemura, N., Tateno, K., Nozaki, K., Sasaki, S., Sergent, S., Kuramochi, E., Wasawo, T., Yokoo, A., Shinya, A., Notomi, M.: All-optical InAsP/InP nanowire switches integrated in a Si photonic crystal. ACS Photon. 7(4), 1016–1021 (2020)

    Article  Google Scholar 

  • Temelkuran, B., Bayindir, M., Ozbay, E., Kavanaugh, P., Sigalas, M.M., Tuttle, G.: Quasimetallic silicon micromachined photonic crystals. Appl. Phys. Lett. 78(3), 264–266 (2001)

    Article  ADS  Google Scholar 

  • Thapa, K.B., Singh, S.K., Ojha, S.P.: Omnidirectional high reflector for infrared frequency. Int. J. Infrared. Milli. Waves 27, 1257–1268 (2006)

    Article  ADS  Google Scholar 

  • Wang, B.-X., Tang, C., Niu, Q., He, Y., Chen, T.: Design of narrow discrete distances of dual-/triple-band terahertz metamaterial absorbers. Nanoscale Res. Lett. 14, 64 (2019)

    Article  ADS  Google Scholar 

  • Wang, B.-X., He, Y., Lou, P., Xing, W.: Design of a dual-band terahertz metamaterial absorber using two identical square patches for sensing application. Nanoscale Adv. 2, 763 (2020)

    Article  ADS  Google Scholar 

  • Wang, B.-X., He, Y., Lou, P., Zhu, H.: Multi-band terahertz superabsorbers based on perforated square-patch metamaterials. Nanoscale Adv. 3, 455 (2021)

    Article  ADS  Google Scholar 

  • Wang, B.-X., Xu, W., Wu, Y., Yang, Z., Laia, S., Lu, L.: Realization of a multi-band terahertz metamaterial absorber using two identical split rings having opposite opening directions connected by a rectangular patch. Nanoscale Adv. (2022a). https://doi.org/10.1039/D1NA00789K

    Article  Google Scholar 

  • Wang, B.-X., Wu, Y., Xu, W., Yang, Z., Lu, L., Fuwei, P.: Quad-band terahertz metamaterial absorber enabled by an asymmetric I-type resonator formed from three metallic strips for sensing application. Sens. Diagn. 1, 169–176 (2022b)

    Article  Google Scholar 

  • Yeh, P.: Optical Waves in Layered Media. Wiley, New York (1988)

    Google Scholar 

  • Zeman, E.J., Schatz, G.C.: An accurate electromagnetic theory study of surface enhancement factors for silver, gold, copper, lithium, sodium, aluminum, gallium, indium, zinc, and cadmium. J. Phys. Chem. 91(3), 634–643 (1987)

    Article  Google Scholar 

  • Zhang, H., et al.: Air-mode photonic crystal ring resonator on silicon-on-insulator. Sci Rep. 6, 19999 (2016)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hadi Rahimi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rahimi, H. Reinforcement of optical wave transmission by using two cap-layers in a multilayer structure containing nano-scale blocks. Opt Quant Electron 54, 498 (2022). https://doi.org/10.1007/s11082-022-03727-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-022-03727-3

Keywords

Navigation