Skip to main content
Log in

Physical condition for single-pulse emission in PQS microchip laser with good performance

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

Physical condition is developed to achieve single-pulse emission with the uniform repetition rate of the PQS microchip lasers thereby overcoming the irregular pulse train formation with QCW pumping. Single-pulse with the high energy of 3.76 mJ at 50 Hz is obtained in Nd:YAG/Cr:YAG monolithic microchip laser without higher-order transverse modes in room temperature. The presented physical condition can provide a good method to design PQS microchip lasers to emit single-pulse at single transverse mode operation for different wavelengths and laser materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Allen, T.J., Berendt, M.O., Spurrell, J., Alam, S.U., Zhang, E.Z., Richardson, D.J., Beard, P.C.: Novel fiber lasers as excitation sources for photoacoustic tomography and microscopy. Proc SPIE 9708, 97080W1-97085 (2016)

    Article  Google Scholar 

  • Ancona, A., Nodop, D., Limpert, J., Nolte, S., Tünnermann, A.: Micro drilling of metals with an inexpensive and compact ultra-short-pulse fiber amplified microchip laser. Appl. Phys. A Mater. Sci. Process. 94(1), 19–24 (2009)

    Article  ADS  Google Scholar 

  • Degnan, J.J.: Optimization of passively Q-switched lasers. IEEE J. Quantum Electron. 31, 1890–1901 (1995)

    Article  ADS  Google Scholar 

  • Dong, J., Ueda, K.I., Yang, P.: Multi-pulse oscillation and instabilities in microchip self-Q-switched transverse-mode laser. Opt. Express 17(19), 16980–16993 (2009)

    Article  ADS  Google Scholar 

  • Freedman, A., Iannarilli, F.J., Jr., Wormhoudt, J.C.: Aluminum alloy analysis using microchip-laser induced breakdown spectroscopy. Spec. Acta. B 60(7–8), 1076–1082 (2005)

    Article  ADS  Google Scholar 

  • Guo, X., Tokita, S., Kawanaka, J.: 12 mJ Yb:YAG/Cr:YAG microchip laser. Opt. Lett. 43(3), 459–461 (2018)

    Article  ADS  Google Scholar 

  • Guo, X., Tokita, S., Kawanaka, J.: High beam quality and high peak power Yb:YAG/Cr:YAG microchip laser. Opt. Exp 27(1), 45–53 (2019)

    Article  Google Scholar 

  • Helmfrid, S., Andou, T., Nakatsuka, S., Tatsuno, K.: Influence of spot size and spectral width of the pump radiation on the efficiency of laser-diode-pumped solid-state lasers. Opt. Rev. 2, 199–203 (1995)

    Article  Google Scholar 

  • Kofler, H., Tauer, J., Tartar, G., Iskra, K., Klausner, J., Herdin, G., Wintner, E.: An innovative solid-state laser for engine ignition. Laser Phys. Lett. 4(4), 322–327 (2007)

    Article  ADS  Google Scholar 

  • Li, C.Y., Dong, J.: Pump beam waist-dependent pulse energy generation in Nd:YAG/Cr4+:YAG passively Q-switched microchip laser. J. Mod. Opt 63(14), 1323–1330 (2016)

    Article  ADS  Google Scholar 

  • Ma, J., Dong, J., Ueda, K., Kaminskii, A.A.: Optimization of Yb:YAG/Cr4+:YAG composite ceramics passively Q-switched microchip lasers. Appl. Phys. B 105, 749–760 (2011)

    Article  ADS  Google Scholar 

  • Okhrimchuk, A.G., Shestakov, A.V.: Absorption saturation mechanism for YAG:Cr4! Cryst. Phys. Rev. B 61(2), 988 (2000)

    Article  ADS  Google Scholar 

  • Pavel, N., Tsunekane, M., Taira, T.: Composite, all-ceramics, high-peak power Nd:YAG/Cr4++:YAG monolithic micro-laser with multiple-beam output for engine ignition. Opt. Express 19(10), 9378–9384 (2011)

    Article  ADS  Google Scholar 

  • Rüdiger Paschotta, https://www.photonics.com/Articles/Understanding_Passively_Q-Switched_Solid-State/a56862

  • Sakai, H., Kan, H., Taira, T.: > 1 MW peak power single-mode high-brightness passively Q-switched Nd3+:YAG microchip laser. Opt. Express 16(24), 19891–19899 (2008)

    Article  ADS  Google Scholar 

  • Sandu, O., Salamu, G., Pavel, N., Dascalu, T., Chuchumishev, D., Gaydardzhiev, A., Buchvarov, I.: High-peak power, passively Q-switched, composite, all-poly-crystalline ceramics Nd:YAG/Cr4+:YAG lasers. Quantum Electron. 43(3), 211 (2012)

    Article  ADS  Google Scholar 

  • Shi, W., Kerr, S., Utkin, I., Ranasinghesagara, J., Pan, L., Roger, Y.G., Zemp, J., Fedosejevs, R.: Optical resolution photoacoustic microscopy using novel high-repetition-rate passively Q-switched microchip and fiber lasers. J. Biomedical Opt. 155, 056017(1)-056017(7) (2010)

    Google Scholar 

  • Szabo, A., Stein, R.A.: Theory of laser giant pulsing by a saturable absorber. J. Appl. Phys. 36, 1562–1566 (1965)

    Article  ADS  Google Scholar 

  • Tang, C.Y., Huang, Y.J., Liang, H.C., Chen, Y.F., Su, K.W.: Scaling output energy in a diode-end-pumped passively Q-switched laser with a flat–flat resonator. Appl. Phys. B 123(1), 20 (2017). https://doi.org/10.1007/s00340-016-6614-6

    Article  ADS  Google Scholar 

  • Tsunekane, M., Inohara, T., Ando, A., Kido, N., Kanehara, K., Taira, T.: High peak power, passively Q-switched microlaser for ignition of engines. IEEE J. Quantum Electron. 46(2), 277–284 (2010)

    Article  ADS  Google Scholar 

  • Wang, L.V., Yao, J.: Photoacoustic microscopy. Laser Photon Rev. 7(5), 758–778 (2013)

    Article  ADS  Google Scholar 

  • Wang, G., Chen, D., Cheng, Y., Dong, J.: Yb:YAG enhanced Cr, Yb:YAG self-Q-switched microchip laser under QCW laser-diode pumping. Opt. Laser Tech. 68, 136–140 (2015)

    Article  ADS  Google Scholar 

  • Xing, E., Rong, J., Khew, S.Y., Tong, C., Hong, M.: Thermal lens effect for optimizing a passively Q-switched 1064 nm laser. Appl. Phys Exp. 11, 0627021–0627025 (2018)

    Article  Google Scholar 

  • Zayhowski, J.J., Dill, C.: Diode-pumped passively Q-switched picosecond microchip lasers. Opt. Lett. 19, 1427–1429 (1994)

    Article  ADS  Google Scholar 

  • Zayhowski, J.J., Kelley, P.L.: Optimization of Q switched lasers. IEEE J. Quantum Electron. 27(9), 2220–2225 (1991)

    Article  ADS  Google Scholar 

Download references

Funding

This research was supported by the National Research Foundation (NRF), Prime Minister's office, Singapore under its Competitive Research Program (NRF-CRP15-2015–04) and administered by the National University of Singapore.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dharmalingam Mangaiyarkarasi.

Ethics declarations

Conflict of interest

The author declares that there are no conflicts of interest related to this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mangaiyarkarasi, D. Physical condition for single-pulse emission in PQS microchip laser with good performance. Opt Quant Electron 54, 445 (2022). https://doi.org/10.1007/s11082-022-03720-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-022-03720-w

Keywords

Navigation