Skip to main content

Advertisement

Log in

Nanoscale graphene plasmonics logic gate based on the plasma dispersion effect

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

A plasmonic logic gate based on a tunable graphene in the region of near infrared (NIR) frequencies has been reported. The electric biasing effects are studied to control the transmission of the guided mode resonances. In the proposed configuration, white graphene is used as a substrate for graphene. Analytical and numerical results exhibit that, by doping various level in graphene through electric biasing, the characteristics of the propagation of the guided mode resonances can be manipulated and several types of logic gates including AND, OR, and XOR are obtained. The magnitude of the applied electric voltage is 0.1 mV with the footprint 1.4 \(\mu \)m \(\times \) 0.8 \(\mu \)m \(\times \) 0.206 \(\mu \)m. Besides, the proposed multifunctional logic gate shows an extinction ratio of 20–50 dB at the wavelength of 7.5 \(\upmu \)m. This high tunable graphene-based plasmonic multifunctional logic gate can play an important role in the progression of nano-scale practical on-chip applications such as plasmonic memory devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availibility

All data included in this paper are available upon request by contact with the contact corresponding author.

References

  • Andreasson, J., Pischel, U., Straight, S.D., Moore, T.A., Moore, A.L., Gust, D.: All-photonic multifunctional molecular logic device. J. Am. Chem. Soc. 133(30), 11641–11648 (2011)

    Article  Google Scholar 

  • Ang, Y.S., Yang, S.A., Zhang, C., Ma, Z., Ang, L.: Valleytronics in merging dirac cones: all-electric-controlled valley filter, valve, and universal reversible logic gate. Phys. Rev. B 96(24), 245410 (2017)

    Article  ADS  Google Scholar 

  • Chen, Z., Chen, J., Li, Y., Pan, D., Lu, W., Hao, Z., Xu, J., Sun, Q.: Simulation of nanoscale multifunctional interferometric logic gates based on coupled metal gap waveguides. IEEE Photon. Technol. Lett. 24(16), 1366–1368 (2012)

    Article  ADS  Google Scholar 

  • Chen, X., Wang, D., Wang, T., Yang, Z., Zou, X., Wang, P., Luo, W., Li, Q., Liao, L., Hu, W., et al.: Enhanced photoresponsivity of a gaas nanowire metal-semiconductor-metal photodetector by adjusting the fermi level. ACS Appl. Mater. Interfaces 11(36), 33188–33193 (2019)

    Article  Google Scholar 

  • Choi, J.-W., Nam, Y.-S., Lee, W.H.: Or logic function of molecular photodiode consisting of gfp/viologen/cytochrome c hetero-film. Mol. Cryst. Liq. Cryst. 407(1), 89–96 (2003)

    Article  Google Scholar 

  • Clark, A.S., Fulconis, J., Rarity, J.G., Wadsworth, W.J., O’Brien, J.L.: All-optical-fiber polarization-based quantum logic gate. Phys. Rev. A 79(3), 030303 (2009)

    Article  ADS  Google Scholar 

  • Dean, C.R., Young, A.F., Meric, I., Lee, C., Wang, L., Sorgenfrei, S., Watanabe, K., Taniguchi, T., Kim, P., Shepard, K.L., et al.: Boron nitride substrates for high-quality graphene electronics. Nat. Nanotechnol. 5(10), 722 (2010)

    Article  ADS  Google Scholar 

  • Farmani, A., Bahar, H.B.: Hardware implementation of 128-bit AES image encryption with low power techniques on FPGA to vhdl. Majlesi J. Electr. Eng. 6(4), 13–22 (2012)

    Google Scholar 

  • Farmani, A., Miri, M., Sheikhi, M.H.: Design of a high extinction ratio tunable graphene on white graphene polarizer. IEEE Photon. Technol. Lett. 30(2), 153–156 (2017)

    Article  ADS  Google Scholar 

  • Farmani, A., Jafari, M., Miremadi, S.S.: A high performance hardware implementation image encryption with AES algorithm. In: Proceedings of the Third International Conference on Digital Image Processing (ICDIP 2011), vol. 8009, p. 800905. International Society for Optics and Photonics (2011)

  • Farmani, A.: Quantum-dot semiconductor optical amplifier: performance and application for optical logic gates. Majlesi J. Telecommun. Devices 6(3) (2017)

  • Fu, Y., Hu, X., Lu, C., Yue, S., Yang, H., Gong, Q.: All-optical logic gates based on nanoscale plasmonic slot waveguides. Nano Lett. 12(11), 5784–5790 (2012)

    Article  ADS  Google Scholar 

  • Ibrahim, T.A., Grover, R., Kuo, L., Kanakaraju, S., Calhoun, L., Ho, P.: All-optical AND/NAND logic gates using semiconductor microresonators. IEEE Photon. Technol. Lett. 15(10), 1422–1424 (2003)

    Article  ADS  Google Scholar 

  • Jang, S., Hwang, E., Lee, Y., Lee, S., Cho, J.H.: Multifunctional graphene optoelectronic devices capable of detecting and storing photonic signals. Nano Lett. 15(4), 2542–2547 (2015)

    Article  ADS  Google Scholar 

  • Kan, E., Ren, H., Wu, F., Li, Z., Lu, R., Xiao, C., Deng, K., Yang, J.: Why the band gap of graphene is tunable on hexagonal boron nitride. J. Phys. Chem. C 116(4), 3142–3146 (2012)

    Article  Google Scholar 

  • Lai, W.-F., Wong, W.-T.: Use of graphene-based materials as carriers of bioactive agents. Asian J. Pharm. Sci. 16(5), 577–588 (2021)

    Article  ADS  Google Scholar 

  • Li, P.-L., Huang, D.-X., Zhang, X.-L.: Soa-based ultrafast multifunctional all-optical logic gates with polsk modulated signals. IEEE J. Quantum Electron. 45(12), 1542–1550 (2009)

    Article  ADS  Google Scholar 

  • Li, F., Shi, M., Huang, C., Jin, L.: Multifunctional photoelectrochemical logic gates based on a hemicyanine sensitized semiconductor electrode. J. Mater. Chem. 15(29), 3015–3020 (2005)

    Article  Google Scholar 

  • Li, H., Tang, J., Kang, Y., Zhao, H., Fang, D., Fang, X., Chen, R., Wei, Z.: Optical properties of quasi-type-II structure in gaas/gaassb/gaas coaxial single quantum-well nanowires. Appl. Phys. Lett. 113(23), 233104 (2018)

    Article  ADS  Google Scholar 

  • Liu, N., Cai, G., Ye, L., Liu, Q.H.: The efficient mixed fem with the impedance transmission boundary condition for graphene plasmonic waveguides. J. Lightwave Technol. 34(23), 5363–5370 (2016)

    Article  ADS  Google Scholar 

  • Liu, H., Ren, G., Gao, Y., Zhu, B., Lian, Y., Wu, B., Jian, S.: Ultracompact electro-optical logic gates based on graphene-silica metamaterial. J. Nanophoton. 10(2), 026004 (2016)

    Article  ADS  Google Scholar 

  • Liu, X., Zhang, G., Li, J., Shi, G., Zhou, M., Huang, B., Tang, Y., Song, X., Yang, W.: Deep learning for Feynman’s path integral in strong-field time-dependent dynamics. Phys. Rev. Lett. 124(11), 113202 (2020)

    Article  ADS  Google Scholar 

  • Liu, W., Zheng, Y., Wang, Z., Wang, Z., Yang, J., Chen, M., Qi, M., Ur Rehman, S., Shum, P.P., Zhu, L., et al.: Ultrasensitive exhaled breath sensors based on anti-resonant hollow core fiber with in situ grown zno-bi2o3 nanosheets. Adv. Mater. Interfaces 8(6), 2001978 (2021)

    Article  Google Scholar 

  • Matsui, J., Mitsuishi, M., Aoki, A., Miyashita, T.: Optical logic operation based on polymer Langmuir-Blodgett-film assembly. Angew. Chem. Int. Ed. 42(20), 2272–2275 (2003)

    Article  Google Scholar 

  • Mu, S., Liu, Q., Kidkhunthod, P., Zhou, X., Wang, W., Tang, Y.: Molecular grafting towards high-fraction active nanodots implanted in n-doped carbon for sodium dual-ion batteries. Natl. Sci. Rev. 8(7), nwaa178 (2021)

    Google Scholar 

  • Ooi, K.J., Chu, H.S., Bai, P., Ang, L.K.: Electro-optical graphene plasmonic logic gates. Opt. Lett. 39(6), 1629–1632 (2014)

    Article  ADS  Google Scholar 

  • Pita, M., Katz, E.: Multiple logic gates based on electrically wired surface-reconstituted enzymes. J. Am. Chem. Soc. 130(1), 36–37 (2008)

    Article  Google Scholar 

  • Rani, P., Kalra, Y., Sinha, R.: Realization of and gate in y shaped photonic crystal waveguide. Opt. Commun. 298, 227–231 (2013)

    Article  ADS  Google Scholar 

  • Rani, P., Kalra, Y., Sinha, R.: Design of all optical logic gates in photonic crystal waveguides. Optik 126(9–10), 950–955 (2015)

    Article  ADS  Google Scholar 

  • Rani, P., Kalra, Y., Sinha, R.: Design and analysis of polarization independent all-optical logic gates in silicon-on-insulator photonic crystal. Opt. Commun. 374, 148–155 (2016)

    Article  ADS  Google Scholar 

  • Son, C., Kim, S., Byun, Y., Jhon, Y., Lee, S., Woo, D., Yoon, T.: Realisation of all-optical multi-functional logic gates using semiconductor optical amplifiers. Electron. Lett. 42(18), 1 (2006)

    Article  Google Scholar 

  • Song, Z., Wang, W., Cai, G., Liu, Q.H.: Investigation of optical spectrum properties of hexagonal boron nitride from metal to dielectric transition. Plasmonics 13(2), 563–566 (2018)

    Article  Google Scholar 

  • Tang, X., Wu, J., Wu, W., Zhang, Z., Zhang, W., Zhang, Q., Zhang, W., Chen, X., Li, P.: Competitive-type pressure-dependent immunosensor for highly sensitive detection of diacetoxyscirpenol in wheat via monoclonal antibody. Anal. Chem. 92(5), 3563–3571 (2020)

    Article  Google Scholar 

  • Wang, M., Jiang, C., Zhang, S., Song, X., Tang, Y., Cheng, H.-M.: Reversible calcium alloying enables a practical room-temperature rechargeable calcium-ion battery with a high discharge voltage. Nat. Chem. 10(6), 667–672 (2018)

    Article  Google Scholar 

  • Wei, H., Li, Z., Tian, X., Wang, Z., Cong, F., Liu, N., Zhang, S., Nordlander, P., Halas, N.J., Xu, H.: Quantum dot-based local field imaging reveals plasmon-based interferometric logic in silver nanowire networks. Nano Lett. 11(2), 471–475 (2010)

    Article  ADS  Google Scholar 

  • Wei, H., Wang, Z., Tian, X., Kall, M., Xu, H.: Cascaded logic gates in nanophotonic plasmon networks. Nat. Commun. 2, 387 (2011)

    Article  ADS  Google Scholar 

  • Xu, X., Nieto-Vesperinas, M.: Azimuthal imaginary poynting momentum density. Phys. Rev. Lett. 123(23), 233902 (2019)

    Article  ADS  Google Scholar 

  • Yang, P., Wu, Z., Chen, Y., Guo, Y., Zhang, P., Song, H.: Spectral irradiance distribution in underwater light field generated by an led light source. J. Coast. Res. 103, 453–457 (2020)

    Article  Google Scholar 

  • Yarahmadi, M., Moravvej-Farshi, M.K., Yousefi, L.: Subwavelength graphene-based plasmonic thz switches and logic gates. IEEE Trans. Terahertz Sci. Technol. 5(5), 725–731 (2015)

    Article  ADS  Google Scholar 

  • Ye, L., Chen, Y., Cai, G., Liu, N., Zhu, J., Song, Z., Liu, Q.H.: Broadband absorber with periodically sinusoidally-patterned graphene layer in terahertz range. Opt. Express 25(10), 11223–11232 (2017)

    Article  ADS  Google Scholar 

  • Youngblood, N., Anugrah, Y., Ma, R., Koester, S.J., Li, M.: Multifunctional graphene optical modulator and photodetector integrated on silicon waveguides. Nano Lett. 14(5), 2741–2746 (2014)

    Article  ADS  Google Scholar 

  • Zhang, X., Tang, Y., Zhang, F., Lee, C.-S.: A novel aluminum-graphite dual-ion battery. Adv. Energy Mater. 6(11), 1502588 (2016)

    Article  Google Scholar 

  • Zhao, R., Wei, X., Zhu, H., Li, S., Li, H.: Edge stabilities and growth kinetics of graphene-like two dimensional monolayers composed with group 15 elements. Phys. Chem. Chem. Phys. 24, 3348 (2022)

    Article  Google Scholar 

Download references

Funding

This research did not receive any specific grant from funding agencies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Homa Farmani.

Ethics declarations

Conflict of interest

Conflict of interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Balamurugan, A.M., Karthikeyan, B. & Farmani, H. Nanoscale graphene plasmonics logic gate based on the plasma dispersion effect. Opt Quant Electron 54, 259 (2022). https://doi.org/10.1007/s11082-022-03660-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-022-03660-5

Keywords

Navigation