Skip to main content
Log in

Non-Hermitian electronics multipods of electromagnetically induced transparency (EIT) and absorption (EIA)

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

We study a non-Hermitian electronic dimers system based on an imaginary resistor (Z) in a (N + 2) level atomic multipod configuration. Non-Hermitian systems depend on a gain/loss parameter and are specifically marked by a degeneracy exhibited at an exceptional point separating different phases of complex modes dynamics. Interestingly, the structural characterization and the dispersive properties reveal a broad range of strong coupling where the interplay between the control and the probe field induce a simultaneous EIT, EIA and ATS. Here, by identifying the underlying physical mechanisms, we show that multiple windows of transparency can be strongly enhanced by the incorporation of several dimers in the multipod network. On the other hand, if the pumping field is resonant in the weak regime, multiple EIT and EIA windows result in the number of dimers. Remarkably, the proposed system embedded a multiple coupling mechanism whose modulation induces a couplingless point (CPLP) whereby the energy cross. At this point EIT and related phenomena vanish.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Autler, S.H., Townes, C.H.: Stark effect in rapidly varying fields. Phys. Rev. 100, 703–722 (1955)

    Article  ADS  Google Scholar 

  • Bai, Z., Hang, C., Huang, G.: Classical analogs of double electromagnetically induced transparency. Opt. Commun. 291, 253–258 (2013)

    Article  ADS  Google Scholar 

  • Bai, P., Ding, K., Wang, G., Luo, J., Zhang, Z.-Q., Chan, C.T., Wu, Y., Lai, Y.: Simultaneous realization of a coherent perfect absorber and laser by zero-index media with both gain and loss. Phys. Rev. A 94, 6 (2016)

    Article  Google Scholar 

  • Bermel, P., Rodriguez, A., Johnson, S.G., Joannopoulos, J.D., Soljačić, M.: Single-photon all-optical switching using waveguide-cavity quantum electrodynamics. Phys. Rev. A 74, 043818 (2006)

    Article  ADS  Google Scholar 

  • Bharti, V., Wasan, A.: Complete wavelength mismatching effect in a doppler broadened Y-type six-level EIT atomic medium. Opt. Commun. 324, 238–244 (2014)

    Article  ADS  Google Scholar 

  • Christodoulides, D., Yang, J.: Parity-time symmetry and its applications. Springer (2018)

    Book  Google Scholar 

  • Cohen-Tannoudji, C.N.: The autler–townes effect revisited. In: Chiao, R.Y. (eds) Amazing Light. Springer, New York, NY, pp 109–123 (1996). https://doi.org/10.1007/978-1-4612-2378-8_11

  • Conforti, M., Westerberg, N., Baronio, F., Trillo, S., Faccio, D.: Negative-frequency dispersive wave generation in quadratic media. Phys. Rev. A 88, 013829 (2013)

    Article  ADS  Google Scholar 

  • Dastidar, K.R., Dutta, S.: Broadening of EIT window by incoherent pumping in a three-level Λ system: effect of homogeneous and inhomogeneous broadening. EPL 82, 54003 (2008)

    Article  ADS  Google Scholar 

  • Dolfo, G., Vigué, J.: Damping of coupled harmonic oscillators. Eur. J. Phys 39, 025005 (2018)

    Article  MATH  Google Scholar 

  • Elwakil, A.S., Maundy, B.J.: Indirect realization of the imaginary resistor jR. Analog Integr. Circuits Signal Process. 35, 2610–2615 (2015)

    Article  Google Scholar 

  • Fleischhauer, M., Imamoglu, A., Marangos, J.P.: Electromagnetically induced transparency: optics in coherent media. Rev. Mod. Phys. 77, 633–673 (2005)

    Article  ADS  Google Scholar 

  • Fotsa-Ngaffo, F., Tabeu, S.B., Tagouegni, S., Kenfack-Jiotsa, A.: Thresholdless characterization in space and time reflection symmetry electronic dimers. J. Opt. Soc. Am. B 34, 658 (2017)

    Article  ADS  Google Scholar 

  • Frimmer, M., Novotny, L.: The classical bloch equations. Am. J. Phys. 82, 947–954 (2014)

    Article  ADS  Google Scholar 

  • Fujii, T. Shouno, K.: Realization of impedance-scaled complex filters using reciprocal elements. In: 2019 34th international technical conference on circuits/systems, computers and communications (ITC-CSCC), (2019)

  • Garrido Alzar, C.L., Martinez, M.A.G., Nussenzveig, P.: Classical analog of electromagnetically induced transparency. Am. J. Phys. 70, 37–41 (2002)

    Article  ADS  Google Scholar 

  • Hai-Chao, L., Guo-Qin, G.: Switching from positive to negative absorption with electromagnetically induced transparency in circuit quantum electrodynamics. Chin. Phys. 23, 054206 (2014)

    Article  ADS  Google Scholar 

  • Harden, J., Joshi, A., Serna, J.D.: Demonstration of double EIT using coupled harmonic oscillators and RLC circuits. Eur. J. Phys. 32, 541–558 (2011)

    Article  Google Scholar 

  • Harris, S.E.: Electromagnetically induced transparency. Phys. Today 50, 36–42 (1997)

    Article  Google Scholar 

  • Harris, S.E., Field, J.E., Imamoğlu, A.: Nonlinear optical processes using electromagnetically induced transparency. Phys. Rev. Lett. 64, 1107–1110 (1990)

    Article  ADS  Google Scholar 

  • Hétet, G., Peng, A., Johnsson, M.T., Hope, J.J., Lam, P.K.: Characterization of electromagnetically-induced-transparency-based continuous-variable quantum memories. Phys. Rev. A 77, 012323 (2008)

    Article  ADS  Google Scholar 

  • Huy, B.N., Le Van, D., Xuan, K.D.: Controllable optical properties of multiple electromagnetically induced transparency in gaseous atomic media. Commun. Phys. 29, 1 (2019)

    Article  ADS  Google Scholar 

  • Lezama, A., Barreiro, S., Akulshin, A.M.: Electromagnetically induced absorption. Phys. Rev. A 59, 4732–4735 (1999)

    Article  ADS  Google Scholar 

  • Liu, C., Dutton, Z., Behroozi, C.H., Hau, L.V.: Observation of coherent optical information storage in an atomic medium using halted light pulses. Nature 409, 490–493 (2001)

    Article  ADS  Google Scholar 

  • Liu, N., Weiss, T., Mesch, M., Langguth, L., Eigenthaler, U., Hirscher, M., Sönnichsen, C., Giessen, H.: Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing. Nano Lett. 10, 1103–1107 (2010)

    Article  ADS  Google Scholar 

  • Lourés, C.R., Faccio, D., Biancalana, F.: Nonlinear cavity and frequency comb radiations induced by negative frequency field effects. Phys. Rev. Lett. 115, 193904 (2015)

    Article  ADS  Google Scholar 

  • Matsko, A.B., Rostovtsev, Y.V., Fleischhauer, M., Scully, M.O.: Anomalous stimulated brillouin scattering via ultraslow light. Phys. Rev. Lett. 86(10), 2006–2009 (2001)

    Article  ADS  Google Scholar 

  • McGloin, D., Fulton, D.J., Dunn, M.H.: Electromagnetically induced transparency in N-level cascade schemes. Opt. Commun. 190, 221–229 (2001)

    Article  ADS  Google Scholar 

  • Mompart, J., Corbalán, R.: Lasing without inversion. J. Opt. B Quantum Semiclass. Opt. 2, R7–R24 (2000)

    Article  ADS  Google Scholar 

  • Nakagawa, T., Shouno, K., Kuniya, K.: Synthesis of a first-order passive complex filter with band-pass/band-elimination characteristics. Analog Integr. Circuits Signal Process. 78, 33–42 (2013)

    Article  Google Scholar 

  • Nezlin, M.V.: Negative-energy waves and the anomalous doppler effect. Sov. Phys. Uspekhi 19, 946–954 (1976)

    Article  ADS  Google Scholar 

  • Paspalakis, E., Knight, P.L.: Electromagnetically induced transparency and controlled group velocity in a multilevel system. Phys. Rev. A 66, 015802 (2002)

    Article  ADS  Google Scholar 

  • Pendharker, S., Guo, Y., Khosravi, F., Jacob, Z.: PT-symmetric spectral singularity and negative-frequency resonance. Phys. Rev. A 95, 033817 (2017)

    Article  ADS  Google Scholar 

  • Petrosyan, D., Malakyan, Y.P.: Magneto-optical rotation and cross-phase modulation via coherently driven four-level atoms in a tripod configuration. Phys. Rev. A 70, 023822 (2004)

    Article  ADS  Google Scholar 

  • Phillips, D.F., Fleischhauer, A., Mair, A., Walsworth, R.L.: Storage of light in atomic vapor. Phys. Rev. Lett. 86, 783–786 (2001)

    Article  ADS  Google Scholar 

  • Ramzan, R., Siddiqui, O.F., Arshad, M.W., Ramahi, O.M.: A complex permittivity extraction method based on anomalous dispersion. IEEE Trans. Microw. Theory Tech. 64, 3787–3796 (2016)

    Article  ADS  Google Scholar 

  • Ramzan, R., Omar, M., Siddiqui, O.F., Amin, M., Bastaki, N., Ksiksi, T.S.: Electromagnetically induced absorption in the near-field of microwave radiative elements with application to foliage moisture sensing. IEEE Access 6, 77859–77868 (2018)

    Article  Google Scholar 

  • Rodriguez, S.R.-K.: Classical and quantum distinctions between weak and strong coupling. Eur. J. Phys. 37, 025802 (2016)

    Article  Google Scholar 

  • Rubino, E., McLenaghan, J., Kehr, S.C., Belgiorno, F., Townsend, D., Rohr, S., Kuklewicz, C.E., Leonhardt, U., König, F., Faccio, D.: Negative-frequency resonant radiation. Phys. Rev. Lett. 108, 253901 (2012)

    Article  ADS  Google Scholar 

  • Schindler, J., Lin, Z., Lee, J.M., Ramezani, H., Ellis, F.M., Kottos, T.: PT-symmetric electronics. J. Phys. A Math. Theor. 45, 444029 (2012)

    Article  ADS  MATH  Google Scholar 

  • Scully, M.O.: From lasers and masers to phaseonium and phasers. Phys. Rep. 219, 191 (1992)

    Article  ADS  Google Scholar 

  • Shouno, K., Ishibashi, Y.: Synthesis and active realization of a three-phase complex coefficient filter using gyrators. In: 2008 51st midwest symposium on circuits and systems, (2008)

  • Siddiqui, O., Ramzan, R., Amin, M., Ramahi, O.M.: A non-invasive phase sensor for permittivity and moisture estimation based on anomalous dispersion. Sci. Rep. 6, 28626 (2016)

    Article  ADS  Google Scholar 

  • Smith, D.D., Chang, H., Fuller, K.A., Rosenberger, A.T., Boyd, R.W.: Coupled-resonator-induced transparency. Phys. Rev. A 69, 6 (2004)

    Article  Google Scholar 

  • Tabeu, S.B., Fotsa-Ngaffo, F., Kenfack-Jiotsa, A.: Imaginary resistor based parity-time symmetry electronics dimers. Opt. Quant. Electron. 51, 1–17 (2019)

    Article  Google Scholar 

  • Tagouegni, S., Fotsa-Ngaffo, F., Tabeu, S.B., Kenfack-Jiotsa, A.: Energy transport and anderson-like localization in non-hermitian electrical transmission line. Phys. Scr. 95(9), 095808 (2020)

    Article  ADS  Google Scholar 

  • Tiaz, G., Shahaliyev, E., Ashiq, M.A., Ghafoor, F.: Multiple color electromagnetically induced switching using a five-level atomic medium. J. Quantum Electron. 55, 1–10 (2019)

    Article  Google Scholar 

  • Totsuka, K., Kobayashi, N., Tomita, M.: Slow light in coupled-resonator-induced transparency. Phys. Rev. Lett. 98, 213904 (2007)

    Article  ADS  Google Scholar 

  • Wang, H., Goorskey, D., Xiao, M.: Enhanced kerr nonlinearity via atomic coherence in a three-level atomic system. Phys. Rev. Lett. 87, 0736601 (2001)

    Article  Google Scholar 

  • Wang, Y., Xue, C., Zhang, Z., Zheng, H., Zhang, W., Yan, S.: Tunable optical analog to electromagnetically induced transparency in graphene-ring resonators system. Sci. Rep. 6, 1 (2016)

    Google Scholar 

  • Wang, T., Hu, Y.-Q., Du, C.-G., Long, G.-L.: Multiple EIT and EIA in optical microresonators. Opt. Express 27, 7344 (2019)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

Authors would like here to acknowledge TABEU Stéphane Boris of HITASTEC (High-tech and Slow Technology) for helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Senghor Tagouegni.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tagouegni, S., Fotsa-Ngaffo, F. & Kenfack-Jiotsa, A. Non-Hermitian electronics multipods of electromagnetically induced transparency (EIT) and absorption (EIA). Opt Quant Electron 54, 200 (2022). https://doi.org/10.1007/s11082-022-03629-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-022-03629-4

Keywords

Navigation