Skip to main content

Advertisement

Log in

Theoretical modelling of high-efficiency perovskite solar cells and reduction of internal heat generation using hot-electron extraction

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

Perovskite single crystals have received enormous attention in recent years. This is, perhaps, due to their simplistic synthesis and excellent optoelectronic properties including the long carrier diffusion length, high carrier mobility, low trap density, and tuneable absorption edge ranging from ultra-violet to near-infrared. These distinguishing features offer numerous potential applications in energy-related fields like solar cells, photodetectors, lasers, etc. Efficiency enhancement and stability, in general, are the main challenges to obtaining better solar cells. One of the main reasons for the early degradation of solar cells is heat generation due to high energy electrons and holes in the conduction and valance bands. In this study, the authors try to introduce the concept of selective energy contacts in perovskite solar cells. Also, they investigate how this concept affects the power conversion efficiency (enhancement) and heat generation due to hot electrons and holes (reduction) scattering in the conduction and valance bands. Both efficiency enhancement and reduction in heat generation have been calculated in this study. Thus, for mathematical modeling of the anticipated idea, the Methylammonium lead halide (CH3NH3PbI3) material is used in a PIN structure for a single-junction solar cell. Also, for the proposed structure, analytical modeling was introduced and it is shown that the efficiency of a single contact cell is around 25%, and after applying the second contact, the efficiency was increased to 35%. Finally, due to the reduction of heat loss in the structure, the stability of perovskite material is significantly increased.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Bella, F., Renzi, P., Cavallo, C., Gerbaldi, C.: Caesium for perovskite solar cells: an overview. Chem. Eur. J. 24, 12183–12205 (2018)

    Article  Google Scholar 

  • Burschka, J., Pellet, N., Moon, S.-J., Humphry-Baker, R., Gao, P., Nazeeruddin, M.K., Grätzel, M.: Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature 499, 316–319 (2013)

    Article  ADS  Google Scholar 

  • Ding, J., Du, S., Zhou, T., Yuan, Y., Cheng, X., Jing, L., Yao, Q., Zhang, J., He, Q., Cui, H., Zhan, X., Sun, H.: Cesium decreases defect density and enhances optoelectronic properties of mixed MA1–xCsxPbBr 3 single crystal. J. Phys. Chem. C. 123, 14969–14975 (2019)

    Article  Google Scholar 

  • Dong, Q., Fang, Y., Shao, Y., Mulligan, P., Qiu, J., Cao, L., Huang, J.: Solar cells electron-hole diffusion lengths > 175 mum in solution-grown CH3NH3PbI3 single crystals. Science 347, 967–970 (2015)

    Article  ADS  Google Scholar 

  • Du, H.J., Wang, W.C., Gu, Y.F.: Simulation design of P-I-N-type all-perovskite solar cells with high efficiency. Chin. Phys. B 26, 1–7 (2017)

  • Hao, F., Stoumpos, C.C., Cao, D.H., Chang, R.P.H., Kanatzidis, M.G.: Lead-free solid-state organic-inorganic halide perovskite solar cells. Nat. Photon. 8, 489–494 (2014a)

    Article  ADS  Google Scholar 

  • Hao, F., Stoumpos, C.C., Chang, R.P.H., Kanatzidis, M.G.: Anomalous band gap behavior in mixed Sn and Pb perovskites enables broadening of absorption spectrum in solar cells. J. Am. Chem. Soc. 136, 8094–8099 (2014b)

    Article  Google Scholar 

  • Heo, J.H., Im, S.H., Noh, J.H., Mandal, T.N., Lim, C., Chang, J.A., Lee, Y.H., Kim, H., Sarkar, A., Nazeeruddin, M.K., Graetzel, M., Seok, S.I.: Efficient inorganic–organic hybrid heterojunction solar cells containing perovskite compound and polymeric hole conductors. Nat. Photon. 7, 486–491 (2013)

  • Hou, M., Xu, Y., Tian, Y., Wu, Y., Zhang, D., Wang, G., Li, B., Ren, H., Li, Y., Huang, Q., Ding, Y., Hou, G., Zhao, Y., Zhang, X.: Synergistic effect of MACl and DMF towards efficient perovskite solar cells. Org. Electron. 88, 1–9 (2021)

  • Huang, T., Tan, S., Nuryyeva, S., Yavuz, I., Babbe, F., Zhao, Y., Abdelsamie, M., Weber, M.H., Wang, R., Houk, K.N., Sutter-Fella, C.M., Yang, Y.: Performance-limiting formation dynamics in mixed-halide perovskites. Sci. Adv. 1–9 (2021). https://doi.org/10.1126/sciadv.abj1799

  • Kim, H.-S., Lee, C.-R., Im, J.-H., Lee, K.-B., Moehl, T., Marchioro, A., Moon, S.-J., Humphry-Baker, R., Yum, J.-H., Moser, J.E., Grätzel, M., Park, N.-G.: Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%. Sci. Rep. 2, 1–7 (2012)

  • Koh, T.M., Fu, K., Fang, Y., Chen, S., Sum, T.C., Mathews, N., Mhaisalkar, S.G., Boix, P.P., Baikie, T.: Formamidinium-containing metal-halide: an alternative material for near-IR absorption perovskite solar cells. J. Phys. Chem. C 118, 16458–16462 (2014)

    Article  Google Scholar 

  • Kojima, A., Teshima, K., Shirai, Y., Miyasaka, T.: Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 131, 6050–6051 (2009)

    Article  Google Scholar 

  • Lee, M.M., Teuscher, J., Miyasaka, T., Murakami, T.N., Snaith, H.J.: Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites. Science 338, 643–647 (2012)

    Article  ADS  Google Scholar 

  • Li, W., Wang, H., Hu, X., Cai, W., Zhang, C., Wang, M., Zang, Z.: Sodium benzenesulfonate modified poly (3,4-Ethylenedioxythiophene): polystyrene sulfonate with improved wettability and work function for efficient and stable perovskite solar cells. Solar RRL 5(1), 1–25 (2020)

  • Li, Y., Wu, H., Qi, W., Zhou, X., Li, J., Cheng, J., Zhao, Y., Li, Y., Zhang, X.: Passivation of defects in perovskite solar cell: From a chemistry point of view. Nano Energy 77, 1–24 (2020)

  • Liu, M., Johnston, M.B., Snaith, H.J.J.N.: Efficient planar heterojunction perovskite solar cells by vapor deposition. Nature 501, 395–398 (2013)

    Article  ADS  Google Scholar 

  • National Renewable Energy Laboratory, Best research-cell efciencies,2019,www.nrel.gov/pv/assets/pdfs/pv-efciencychart. 20190103

  • Niu, G., et al.: Enhancement of thermal stability for perovskite solar cells through cesium doping. RSC Adv. 7(28), 17473–17479 (2017)

    Article  ADS  Google Scholar 

  • Shayan, S., Matloub, S., Rostami, A.: Efficiency enhancement in a single bandgap silicon solar cell considering hot-carrier extraction using selective energy contacts. Opt. Express 29(4), 5068–5080 (2021)

  • Stranks, S.D., Eperon, G.E., Grancini, G., Menelaou, C., Alcocer, M.J.P., Leijtens, T., Herz, L.M., Petrozza, A., Snaith, H.J.: Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber. Science 342, 341–344 (2013)

    Article  ADS  Google Scholar 

  • Todorov, T., Gunawan, O., Guha, S.: A road towards 25% efficiency and beyond: perovskite tandem solar cells. Mol. Syst. Des. Eng. 1(4), 370–376 (2016)

    Article  Google Scholar 

  • Xiao, J.W., Liu, L., Zhang, D., De Marco, N., Lee, J.W., Lin, O., Chen, Q., Yang, Y.: The emergence of the mixed perovskites and their applications as solar cells. Adv. Energy Mater. 7, 1–20 (2017)

  • Xing, G., Mathews, N., Sun, S., Lim, S.S., Lam, Y.M., Graetzel, M., Mhaisalkar, S., Sum, T.C.: Long-range balanced electron-and hole-transport lengths in organic-inorganic CH3NH3PbI3. Science 342, 344–347 (2013)

    Article  ADS  Google Scholar 

  • Yang, W.S., Park, B.W., Jung, E.H., Jeon, N.J., Kim, Y.C., Lee, D.K., Shin, S.S., Seo, J., Kim, E.K., Noh, J.H., Seok, S.: Iodide management in formamidinium-lead-halide–based perovskite layers for efficient solar cells. Science 356, 1376–1379 (2017)

    Article  ADS  Google Scholar 

  • Yang, Z., Yu, Z., Wei, H., Xiao, X., Ni, Z., Chen, B., Deng, Y., Habisreutinger, S.N., Chen, X., Wang, K.: Enhancing electron diffusion length in narrow-bandgap perovskites for efficient monolithic perovskite tandem solar cells. Nat. Commun. 10, 1–9 (2019)

    Article  Google Scholar 

  • Zhou, T., Wang, M., Zang, Z., Fang, L.: Stable dynamics performance and high efficiency of ABX3-type super-alkali perovskites first obtained by introducing H5O2 cation. Adv. Energy Mater. 9, 1–9 (2019)

Download references

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Rostami.

Ethics declarations

Conflict of interest

The authors have not disclosed any competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rostami, A., Tofigi, I., Barzinjy, A.A. et al. Theoretical modelling of high-efficiency perovskite solar cells and reduction of internal heat generation using hot-electron extraction. Opt Quant Electron 54, 234 (2022). https://doi.org/10.1007/s11082-022-03618-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-022-03618-7

Keywords

Navigation