Skip to main content
Log in

Wavefront sensing of interference fringe based on generative adversarial network

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

To increase the measurement accuracy of optical systems, which are implemented in various applications, an improvement of the optical measurement technique is required. This paper proposes an image-to-image wavefront sensing approach using a deep neural network that directly predicts the phase image from the corresponding interference fringe image instead of reconstruction by the Zernike coefficients. The model is based on a conditional generative adversarial network (CGAN). To train the model, we used the formula-based ideal interference fringe images as the inputs of the CGAN, to conditionally predict the corresponding phase images as the output. We numerically investigated the performance by calculating the similarity between the ideal phase image and model output. In addition, with reference to a previous study, it was determined whether the model can extract more features from the interferogram for the prediction of Zernike coefficients. Moreover, an optical simulation software was introduced to provide an increased number of actual interferograms, to verify the proposed method. Based on the results, the proposed system can obtain the phase image directly and reduce the error, thus improving the measurement accuracy of the interference fringe.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019)

    Article  ADS  Google Scholar 

  • Campbell, S.D., Sell, D., Jenkins, R.P., Whiting, E.B., Fan, J.A., Werner, D.H.: Review of numerical optimization techniques for meta-device design [Invited]. Opt. Mater. Express 9(4), 1842–1863 (2019)

    Article  ADS  Google Scholar 

  • Dean, B.H., Bowers, C.W.: Diversity selection for phase-diverse phase retrieval. JOSA A 20(8), 1490–1504 (2003)

    Article  ADS  Google Scholar 

  • Fischer, R., Tadic-Galeb, B., Yoder, P.: Optical System Design. McGraw-Hill Education (2008)

  • Ghiglia, D.C., Pritt, M.D.: Two-Dimensional Phase Unwrapping: Theory, Algorithms, and Software. Wiley, New York (1998)

    MATH  Google Scholar 

  • Goodwin, E.P., Wyant, J.C.: Field Guide to Interferometric Optical Testing. SPIE, Bellingham, WA (2006)

    Book  Google Scholar 

  • Guo, H., Korablinova, N., Ren, Q., Bille, J.: Wavefront reconstruction with artificial neural networks. Opt. Express 14(14), 6456–6462 (2006)

    Article  ADS  Google Scholar 

  • Hariharan, P.: Basics of Interferometry. Elsevier (2010)

  • Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. ArXiv Preprint ArXiv:1706.08500 (2017)

  • Huang, Y., Lu, Z., Shao, Z., Ran, M., Zhou, J., Fang, L., Zhang, Y.: Simultaneous denoising and super-resolution of optical coherence tomography images based on generative adversarial network. Opt. Express 27(9), 12289–12307 (2019)

    Article  ADS  Google Scholar 

  • Hu, J., Shen, L., Sun, G.: Squeeze-and-excitation networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7132–7141 (2018)

  • Hu, L., Hu, S., Gong, W., Si, K.: Learning-based Shack-Hartmann wavefront sensor for high-order aberration detection. Opt. Express 27(23), 33504–33517 (2019)

    Article  ADS  Google Scholar 

  • Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-image translation with conditional adversarial networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1125–1134 (2017)

  • Jin, Y., Zhang, Y., Hu, L., Huang, H., Xu, Q., Zhu, X., Huang, L., Zheng, Y., Shen, H.L., Gong, W., Si, K.: Machine learning guided rapid focusing with sensor-less aberration corrections. Opt. Express 26(23), 30162–30171 (2018)

    Article  ADS  Google Scholar 

  • Jin, Y., Chen, J., Wu, C., Chen, Z., Zhang, X., Shen, H.L., Gong, W., Si, K.: Wavefront reconstruction based on deep transfer learning for microscopy. Opt. Express 28(14), 20738–20747 (2020)

    Article  ADS  Google Scholar 

  • Kendrick, R.L., Acton, D.S., Duncan, A.L.: Phase-diversity wave-front sensor for imaging systems. Appl. Opt. 33(27), 6533–6546 (1994)

    Article  ADS  Google Scholar 

  • Lakshminarayanan, V., Fleck, A.: Zernike polynomials: a guide. J. Mod. Opt. 58(7), 545–561 (2011)

    Article  ADS  Google Scholar 

  • LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436–444 (2015)

    Article  ADS  Google Scholar 

  • Ledig, C., Theis, L., Huszár, F., Caballero, J., Cunningham, A., Acosta, A., Aitken, A., Tejani, A., Totz, J., Wang, Z.: Photo-realistic single image super-resolution using a generative adversarial network. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4681–4690 (2017)

  • Li, J., Li, Y., Li, J., Zhang, Q., Li, J.: Single-pixel compressive optical image hiding based on conditional generative adversarial network. Opt. Express 28(15), 22992–23002 (2020)

    Article  ADS  Google Scholar 

  • Lotter, W., Kreiman, G., Cox, D.: Unsupervised learning of visual structure using predictive generative networks. ArXiv Preprint ArXiv:1511.06380 (2015)

  • Luo, L., Xiong, Y., Liu, Y., Sun, X.: Adaptive gradient methods with dynamic bound of learning rate. ArXiv Preprint ArXiv:1902.09843 (2019)

  • Mirza, M., Osindero, S.: Conditional generative adversarial nets. ArXiv Preprint ArXiv:1411.1784 (2014)

  • Miyato, T., Kataoka, T., Koyama, M., Yoshida, Y.: Spectral normalization for generative adversarial networks. ArXiv Preprint ArXiv:1802.05957 (2018)

  • Moon, I., Jaferzadeh, K., Kim, Y., Javidi, B.: Noise-free quantitative phase imaging in Gabor holography with conditional generative adversarial network. Opt. Express 28(18), 26284–26301 (2020)

    Article  ADS  Google Scholar 

  • Nikitin, A., Sheldakova, J., Kudryashov, A., Denisov, D., Karasik, V., Sakharov, A.: Hartmannometer versus Fizeau Interferometer: advantages and drawbacks. In: Photonic Instrumentation Engineering II; 9369 (International Society for Optics and Photonics, 2015), p. 936905

  • Nishizaki, Y., Valdivia, M., Horisaki, R., Kitaguchi, K., Saito, M., Tanida, J., Vera, E.: Deep learning wavefront sensing. Opt. Express 27(1), 240–251 (2019)

    Article  ADS  Google Scholar 

  • Paine, S.W., Fienup, J.R.: Machine learning for improved image-based wavefront sensing. Opt. Lett. 43(6), 1235–1238 (2018)

    Article  ADS  Google Scholar 

  • Pan, S.J., Yang, Q.: A survey on transfer learning. IEEE Trans. Knowl. Data Eng. 22(10), 1345–1359 (2009)

    Article  Google Scholar 

  • Saha, D., Schmidt, U., Zhang, Q., Barbotin, A., Hu, Q., Ji, N., Booth, M.J., Weigert, M., Myers, E.W.: Practical sensorless aberration estimation for 3D microscopy with deep learning. Opt. Express 28(20), 29044–29053 (2020)

    Article  ADS  Google Scholar 

  • Salimans, T., Goodfellow, I., Zaremba, W., Cheung, V., Radford, A., Chen, X.: Improved techniques for training gans. ArXiv Preprint ArXiv:1606.03498 (2016)

  • Sargent, G.C., Ratliff, B.M., Asari, V.K.: Conditional generative adversarial network demosaicing strategy for division of focal plane polarimeters. Opt. Express 28(25), 38419–38443 (2020)

    Article  ADS  Google Scholar 

  • Shmelkov, K., Schmid, C., Alahari, K.: How good is my GAN? In: Lecture Notes in Computer Science, Proceedings of the European Conference on Computer Vision (ECCV), pp. 218–234 (2018)

  • Ulyanov, D., Vedaldi, A., Lempitsky, V.: Instance normalization: the missing ingredient for fast stylization. ArXiv Preprint ArXiv:1607.08022 (2016)

  • Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004)

    Article  ADS  Google Scholar 

  • Whang, A.J.-W., Chen, Y.Y., Chang, C.M., Liang, Y.C., Yang, T.H., Lin, C.T., Chou, C.H.: Prediction technique of aberration coefficients of interference fringes and phase diagrams based on convolutional neural network. Opt. Express 28(25), 37601–37611 (2020)

    Article  ADS  Google Scholar 

  • Whang, A.J.-W., Chen, Y.-Y., Yang, T.-H., Lin, C.-T., Jian, Z.-J., Chou, C.-H.: Zernike coefficient prediction technique for interference based on generation adversarial network. Appl. Sci. 11(15), 6933 (2021)

    Article  Google Scholar 

  • Wyant, J.C., Creath, K.: Basic wave-front aberration theory for optical metrology. Appl. Opt. Opt. Eng. 11(2), 28–39 (1992)

    Google Scholar 

Download references

Acknowledgements

Appreciate the support from Taiwan's Ministry of Science and Technology and the Taiwan Instrument Research Institute.

Funding

Taiwan's Ministry of Science and Technology provided funding (Grant No. 110-2221-E-011-108-).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi-Yung Chen.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Whang, A.JW., Chen, YY., Chen, HC. et al. Wavefront sensing of interference fringe based on generative adversarial network. Opt Quant Electron 54, 219 (2022). https://doi.org/10.1007/s11082-022-03615-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-022-03615-w

Keywords

Navigation