Skip to main content
Log in

Application of cavity Maxwell Garnett theory in SPR based fiber optic sensor with porous alumina structure

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

The present manuscript describes the theoretical understanding of nanoporous alumina based fiber optic sensing structures. The Cavity Maxwell Garnett theory is used to calculate the dielectric functions of the proposed layer. The performance of the proposed sensing structure is evaluated in terms of its sensitivity towards change in the refractive index of the nearby medium. The sharpness of the resonance has also been calculated as an estimation of the performance parameters. It has been observed that the proposed structure is approximately 13 times more sensitive than the conventional fiber optic sensors. The study has further been extended by replacing the nanolayer of aluminum with the nanolayer of the gold. A comparative study has been provided in terms of the efficiency of the fiber optic probe. The effects of change in pore radius, thickness of the adsorbed medium and shell radius have also been studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  • Bergman, D.J.: Exactly solvable microscopic geometries and rigorous bounds for the complex dielectric constant of a two-component composite material. Phys. Rev. Lett. 45, 148 (1980)

    Article  ADS  Google Scholar 

  • Bruggeman, D.A.G.: Calculation of various physical constants of heterogeneous substances III. The elastic constants of quasiisotropic mixtures of isotropic substances. Ann Phys (leipzig) 24, 636 (1935a)

    Article  ADS  Google Scholar 

  • Bruggeman, D.A.G.: Calculation of various physical constants of heterogeneous substances I. Dielectric constants and conductive capabilities of the mixing bodies of isotropic substances. Ann. Phys. (leipzig) 24, 636–791 (1935b)

    Article  ADS  Google Scholar 

  • Chen, Y., Yu, Y., Li, X., Tan, Z., Geng, Y.: Experimental comparison of fiber optic surface plasmon resonance sensors with multi metal and single silver or gold layer. Plasmonics 10, 1801–1808 (2015)

    Article  Google Scholar 

  • Chu, S.Z., Wada, K., Inoue, S., Isogai, M., Katsuta, Y., Yasumori, A.: Large-scale fabrication of ordered nanoporous alumina films with arbitrary pore intervals by critical-potential anodization. J. Electrochem. Soc. 153, 384 (2006)

    Article  Google Scholar 

  • Evans, P., Hendren, W.R., Atkinson, R., Wurtz, G.A., Dickson, W., Zayats, A.V., Pollard, R.J.: Growth and properties of gold and nickel nanorods in thin film alumina. Nanotechnology 17, 5746 (2006)

    Article  ADS  Google Scholar 

  • Fontana, E.: Thickness optimization of metal films for the development of surface-plasmon-based sensors for nonabsorbing media. Appl. Opt. 45, 7632–7642 (2006)

    Article  ADS  Google Scholar 

  • Friedman, A.L., Brittain, D., Menon, L.: Roles of pH and acid type in the anodic growth of porous alumina. J. Chem. Phys. 127, 154717 (2007)

    Google Scholar 

  • Ghatak, A.K., Thyagarajan, K.: Introduction to Fiber Optics. Cambridge University Press, England (1998)

    Book  Google Scholar 

  • Ghicov, A., Schmuki, P.: Self-ordering electrochemistry: a review on growth and functionality of TiO2 nanotubes and other self-aligned MOx structures. Chem. Commun. 2009, 2791–2802 (2009)

    Article  Google Scholar 

  • Gyurcsanyi, R.E.: Chemically-modified nanopores for sensing. Trends Anal. Chem. 27, 627–639 (2008)

    Article  Google Scholar 

  • Homola, J.: On the sensitivity of surface plasmon resonance sensors with spectral interrogation. Sens. Actuators B 41, 207–211 (1997)

    Article  Google Scholar 

  • Homola, J.: Surface plasmon resonance sensors for detection of chemical and biological species. Chem. Rev. 108, 462–493 (2008)

    Article  Google Scholar 

  • Hotta, K., Yamaguchi, A., Teramae, N.: Nanoporous waveguide sensor with optimized nanoarchitectures for highly sensitive label free biosensing. ACS Nano 6, 1541–1547 (2012)

    Article  Google Scholar 

  • Jani, A.M.M., Losic, D., Voelcker, N.H.: Nanoporous anodic aluminium oxide: advances in surface engineering and emerging applications. Prog. Mater. Sci. 58, 636–704 (2013)

    Article  Google Scholar 

  • Jha, R., Verma, R.K., Gupta, B.D.: Surface plasmon resonance-based tapered fiber optic sensor: sensitivity enhancement by introducing a teflon layer between core and metal layer. Plasmonics 3, 151–156 (2008)

    Article  Google Scholar 

  • Koutsioubas, A.G., Spiliopoulos, N., Anastassopoulos, D., Vradis, A.A., Priftis, G.D.: Nanoporous alumina enhanced surface plasmon resonance sensors. J. Appl. Phys. 103, 094521 (2008)

    Google Scholar 

  • Kretschmann, E.: Determination of the optical constants of metals by excitation of surface plasmons. Z. Phys. 241, 313 (1971)

    Article  ADS  Google Scholar 

  • Kumeria, T., Santos, A., Losic, D.: Nanoporous anodic alumina platforms: engineered surface chemistry and structure for optical sensing applications. Sensors 14, 11878–11918 (2014)

    Article  ADS  Google Scholar 

  • Landau, L.D., Lifshitz, E.M.: Electrodynamcis of continuous media. J. Phys. Soc. Jpn. 16, 359 (1961)

  • Lau, K.H.A., Duran, H., Knoll, W.: In situ characterization of N-carboxy anhydride polymerization in nanoporous anodic alumina. J. Phys. Chem. B 113, 3179–3189 (2009)

  • Lee, W., Ji, R., Gösele, U., Nielsch, K.: Fast fabrication of long-range ordered porous alumina membranes by hard anodization. Nat. Mater. 5, 741–747 (2006)

    Article  ADS  Google Scholar 

  • Lee, W., Schwirn, K., Steinhart, M., Pippel, E., Scholz, R., Gösele, U.: Structural engineering of nanoporous anodic aluminium oxide by pulse anodization of aluminium. Nat. Nanotechnol. 3, 234–239 (2008a)

    Article  Google Scholar 

  • Lee, K., Tang, Y., Ouyang, M.: Self-ordered controlled structure nanoporous membranes using constant current anodization. Nano Lett. 8, 4624–4629 (2008b)

    Article  ADS  Google Scholar 

  • Lee, W., Kim, J.C., Gösele, U.: Spontaneous current oscillations during hard anodization of aluminum under potentiostatic conditions. Adv. Funct. Mater. 20, 21–27 (2010)

    Article  Google Scholar 

  • Looyenga, H.: Dielectric constants of heterogeneous mixtures. Physica (amsterdam) 31, 401–406 (1965)

    Article  ADS  Google Scholar 

  • Losic, D.: Preparation of porous anodic alumina with periodically perforated pores. Langmuir 25, 5426–5431 (2009)

    Article  Google Scholar 

  • Losic, D., Lillo, M.: Porous alumina with shaped pore geometries and complex pore architectures fabricated by cyclic anodization. Small 5, 1392–1397 (2009)

    Article  Google Scholar 

  • Ma, Y., Farrell, G., Semenova, Y., Chan, H.P., Zhang, H., Wu, Q.: Sensitivity enhancement for a multimode fiber sensor with an axisymmetric metal grating layer. Photon. Nanostruct. Fundam. Appl. 12, 69–74 (2014)

    Article  ADS  Google Scholar 

  • Maharana, P.K., Bharadwaj, S., Jha, R.: Electric field enhancement in surface plasmon resonance bimetallic configuration based on chalcogenide prism. J. Appl. Phys. 114, 014304 (2013)

    Google Scholar 

  • Marsal, L.F., Vojkuvka, L., Formentin, P., Pallarés, J., Ferre-Borrull, J.: Fabrication and optical characterization of nanoporous alumina films annealed at different temperatures. Opt. Mater. 31, 860–864 (2009)

    Article  ADS  Google Scholar 

  • Maxwell Garnett, J.C.: Colours in metal glasses and in metallic films. Philos. Trans. r. Soc. Lond. Ser. A 203, 385–420 (1904a)

    Article  ADS  MATH  Google Scholar 

  • Meng, G., Jung, Y.J., Cao, A., Vajtai, R., Ajayan, P.M.: Controlled fabrication of hierarchically branched nanopores, nanotubes, and nanowires. Proc. Natl. Acad. Sci. USA 102, 7074–7078 (2005)

    Article  ADS  Google Scholar 

  • Mishra, A.K., Mishra, S.K., Verma, R.K.: Graphene and beyond graphene MoS2: a new window in surface-plasmon-resonance-based fiber optic sensing. J. Phys. Chem. C 120, 2893–2900 (2016)

    Article  Google Scholar 

  • Monecke, J.: Bergman spectral representation of a simple expression for the dielectric response of a symmetric two-component composite. J. Phys. Condens. Matter. 6, 907 (1994)

    Article  ADS  Google Scholar 

  • Ono, S., Saito, M., Asoh, H.: Self-ordering of anodic porous alumina formed in organic acid electrolytes. Electrochim. Acta 51, 827–833 (2005)

    Article  Google Scholar 

  • Piliarik, M., Parova, L., Homola, J.: High-throughput SPR sensor for food safety. Biosens. Bioelectron 24, 1399–1404 (2009)

    Article  Google Scholar 

  • Ren, Y., Ma, Z., Bruce, P.G.: Ordered mesoporous metal oxides: synthesis and applications. Chem. Soc. Rev. 41, 4909–4927 (2012)

    Article  Google Scholar 

  • Santos, A., Formentín, P., Pallarès, J., Ferré-Borrull, J., Marsal, L.F.: Structural engineering of nanoporous anodic alumina funnels with high aspect ratio. J. Electroanal. Chem. 655, 73–78 (2011)

    Article  Google Scholar 

  • Santos, A., Kumeria, T., Losic, D.: Nanoporous anodic aluminum oxide for chemical sensing and biosensors. Trends Anal. Chem. 44, 25–38 (2013)

    Article  Google Scholar 

  • Sasaki, Y., Nishina, Y., Sato, M., Okamura, K.: Optical-phonon states of SiC small particles studied by Raman scattering and infrared absorption. Phys. Rev. B 40, 1762 (1989)

    Article  ADS  Google Scholar 

  • Sharma, A.K., Mohr, G.J.: Theoretical understanding of an alternating dielectric multilayer-based fiber optic SPR sensor and its application to gas sensing. New J. Phys. 10, 023039 (2008)

    Article  ADS  Google Scholar 

  • Sharma, A.K., Jha, R., Gupta, B.D.: Fiber-optic sensors based on surface plasmon resonance: a comprehensive review. Sens. J. IEEE 7, 1118–1129 (2007)

    Article  ADS  Google Scholar 

  • Sipova, H., Homola, J.: Surface plasmon resonance sensing of nucleic acids: a review. Anal. Chim. Acta 773, 9–23 (2013)

    Article  Google Scholar 

  • Spanier, J.E., Herman, I.P.: Use of hybrid phenomenological and statistical effective-medium theories of dielectric functions to model the infrared reflectance of porous SiC films. Phys. Rev. B 61, 10437 (2000)

    Article  ADS  Google Scholar 

  • Srivastava, S.K., Gupta, B.D.: Fiber optic plasmonic sensors: past present and future. Open Opt. J. 7, 58 (2013)

    Article  Google Scholar 

  • Sulka, G.D., Stepniowski, W.J.: Structural features of self-organized nanopore arrays formed by anodization of aluminum in oxalic acid at relatively high temperatures. Electrochim. Acta 54, 3683–3691 (2009)

    Article  Google Scholar 

  • Tabassum, R., Gupta, B.D.: Influence of oxide overlayer on the performance of a fiber optic SPR sensor with Al/Cu layers. IEEE J. Sel. Top. Quantum Electron. 23, 81–88 (2017)

    Article  ADS  Google Scholar 

  • Tripathi, S.M., Kumar, A., Marin, E., Meunier, J.P.: Side-polished optical fiber grating-based refractive index sensors utilizing the pure surface plasmon polariton. Lightwave Technol. 26, 1980–1985 (2008)

    Article  ADS  Google Scholar 

  • Verma, R.K., Gupta, B.D.: Surface plasmon resonance-based fiber optic sensor for the IR region using a conducting metal oxide film. J. Opt. Soc. Am. A 27, 846–851 (2010)

    Article  ADS  Google Scholar 

  • Vikas and Verma, R.K.: Sensitivity enhancement of a lossy mode resonance based tapered fiber optic sensor with an optimum taper profile. J. Phys. D Appl. Phys. 51, 415302 (2018)

  • Vojkuvka, L., Santos, A., Pallarès, J., Ferré-Borrull, J., Marsal, L.F., Celis, J.-P.: On the mechanical properties of nanoporous anodized alumina by nanoindentation and sliding tests. Surf. Coat. Technol. 206, 2115–2124 (2012)

    Article  Google Scholar 

  • Weaver, J.H., Alexander, R.W., Teng, L., Mann, R.A., Bell, R.J.: Infrared absorption of small silicon particles with oxide overlayers. Phys. Status Solidi A 20, 321–329 (1973)

    Article  ADS  Google Scholar 

  • Wehrspohn, R.B.: Ordered porous nanostructures and applications. Nanostruct. Sci. Technol. Springer 1, 207 (2005)

  • Woo, L., Jae-Cheon, K.: Highly ordered porous alumina with tailor-made pore structures fabricated by pulse anodization. Nanotechnology 21, 485304 (2010)

  • Yi, L., Zhiyuan, L., Shuoshuo, C., Xing, H., Xinhua, H.: Novel AAO films and hollow nanostructures fabricated by ultra-high voltage hard anodization. Chem. Commun. 46, 309–311 (2009)

    Article  Google Scholar 

  • Zhang, F., Liu, X., Pan, C., Zhu, J.: Nano-porous anodic aluminium oxide membranes with 6–19 nm pore diameters formed by a low-potential anodizing process. Nanotechnology 18, 345302 (2007)

Download references

Acknowledgements

Ms. Jyoti would like to acknowledge Central University of Rajasthan for providing university fellowship. Also, this work is partially supported by DST SERB CRG/2020/005593, India.

Funding

Science and Engineering Research Board, CRG/2020/005593, R. K. Verma

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. K. Verma.

Ethics declarations

Conflict of interest

The authors do not have any conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jyoti, Verma, R.K. Application of cavity Maxwell Garnett theory in SPR based fiber optic sensor with porous alumina structure. Opt Quant Electron 54, 223 (2022). https://doi.org/10.1007/s11082-022-03591-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-022-03591-1

Keywords

Navigation