Skip to main content
Log in

Design and analysis of a 2 × 2 microstrip ratch antenna array based on periodic and non-periodic photonic crystals substrate in THz

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

In recent years, large demand for an antenna with high gain and larger bandwidth is required. In this paper, a \(2\times 2\) microstrip patch antenna array is designed and analyzed based on different substrates including periodic, non-periodic photonic crystals and homogeneous substrates. The proposed antenna array is designed to operate around 0.65 THz, which has applications in sensing and communication technologies. The simulated results showed that the designed antenna array based on periodic photonic crystals performed better than the conventional antenna array in terms of return loss, bandwidth, VSWR, gain, and radiation efficiency around 0.65 THz. Moreover, the performance of the proposed antenna array based on periodic photonic crystals is investigated by designing three other antenna arrays by using non-periodic photonic crystals substrate, which is divided into several sets of air holes, where each set of air holes had a different radius. The simulated results showed that the return loss, bandwidth, gain and radiation efficiency were improved by using non-periodic photonic crystals substrate compared to periodic photonic crystals substrate. The highest radiation characteristics were achieved by the fourth antenna array, which obtained a wide bandwidth greater than 291 GHz, whereas the return loss, gain and radiation efficiency were \(-6\)3.62 dB, 13.70 dB and 92.45\(\%\), respectively at a resonance frequency of 0.628 THz. The simulation has been performed using two different simulation techniques, CST Microwave Studio based on the finite integration technique and Ansys HFSS based on finite element technique which showed the convergence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Akyildiz, I.F., Jornet, J.M., Han, C.: Terahertz band: Next frontier for wireless communications. Phys. Commun. 12, 16–32 (2014)

    Article  Google Scholar 

  • Alam, M.S., Islam, M.T., Misran, N.: A novel compact split ring slotted electromagnetic bandgap structure for microstrip patch antenna performance enhancement. Progr. Electromagn. Res. 130, 389–409 (2012)

    Article  Google Scholar 

  • Amalraj, T.D., Savarimuthu, R.: Design and analysis of microstrip antenna on periodic and non-periodic photonic band gap substrate. IETE J. Res. 1, 1–10 (2020)

    Article  Google Scholar 

  • Azarbar, A., Masouleh, M., Behbahani, A.: A new terahertz microstrip rectangular patch array antenna. Int. J. Electromag. Appl. 4(1), 25–29 (2014)

    Google Scholar 

  • Balanis, C.A.: Microstrip antennas. Antenna Theory 3, 811–882 (2005)

    ADS  Google Scholar 

  • Bole, A.G., Wall, A., Norris, A.: Radar and ARPA manual: radar. AIS and target tracking for marine radar users. Butterworth-Heinemann, London (2013)

    Google Scholar 

  • Britto, E.C., Danasegaran, S.K., Johnson, W.: Design of slotted patch antenna based on photonic crystal for wireless communication. Int. J. Commun. Syst. 34(1), e4662 (2021)

    Google Scholar 

  • Chieh, J.-C.S., Pham, A.-V., Kannell, G., Pidwerbetsky, A.: A w-band \(8\times 8\) series fed patch array detector on liquid crystal polymer. In: Proceedings of the 2012 IEEE International Symposium on Antennas and Propagation. IEEE, pp. 1–2 (2012)

  • Choudhury, B., Sonde, A.R., Jha, R.M.: Terahertz Antenna Technology for Space Applications, pp. 1–33. Springer, Berlin (2016)

    Book  Google Scholar 

  • Federici, J., Moeller, L.: Review of terahertz and subterahertz wireless communications. J. Appl. Phys. 107(11), 6 (2010)

    Article  Google Scholar 

  • Galoda, S., Singh, G.: Fighting terrorism with terahertz. IEEE Potentials 26(6), 24–29 (2007)

    Article  Google Scholar 

  • Gao, M., Li, K., Kong, F., Zhuang, H., Zhu, G.: Graphene-based composite right/left-handed leaky-wave antenna at terahertz. Plasmonics 1, 1–6 (2020)

    Google Scholar 

  • Garg, R., Bhartia, P., Bahl, I.J., IttipiboonA.: Microstrip antenna design handbook. Artech house (2001)

  • Hocini, A., Temmar, M., Khedrouche, D., Zamani, M.: Novel approach for the design and analysis of a terahertz microstrip patch antenna based on photonic crystals. Photon. Nanostruct. Fund. Appl. 36, 100723 (2019)

    Article  Google Scholar 

  • Jha, K.R., Singh, G.: Microstrip patch array antenna on photonic crystal substrate at terahertz frequency. Infrared Phys. Technol. 55(1), 32–39 (2012)

    Article  ADS  Google Scholar 

  • Jha, K.R., Singh, G.: Analysis and design of terahertz microstrip antenna on photonic bandgap material. J. Comput. Electron. 11(4), 364–373 (2012)

    Article  Google Scholar 

  • Ji, Y.B., Oh, S.J., Kang, S.-G., Heo, J., Kim, S.-H., Choi, Y., Song, S., Son, H.Y., Kim, S.H., Lee, J.H., et al.: Terahertz reflectometry imaging for low and high grade gliomas. Sci. Rep. 6(1), 1–9 (2016)

    Article  Google Scholar 

  • Jin, N., Yu, A., Zhang, X.: An enhanced 2\(\times\) 2 antenna array based on a dumbbell EBG structure. Microwave Opt. Technol. Lett. 39(5), 395–399 (2003)

    MathSciNet  Google Scholar 

  • Kazemi, F.: Dual band compact fractal THz antenna based on CRLH-TL and graphene loads. Optik 206, 164369 (2020)

    Article  ADS  Google Scholar 

  • Khamaisi, B., Jameson, S., Socher, E.: A 210–227 GHz transmitter with integrated on-chip antenna in 90 nm CMOS technology. IEEE Trans. Terahertz Sci. Technol. 3(2), 141–150 (2013)

    Article  ADS  Google Scholar 

  • Khan, M.A.K., Ullah, M.I., Alim, M.A.: High-gain and ultrawide-band graphene patch antenna with photonic crystal covering 96.48% of the terahertz band. Optik 227, 166056 (2021)

    Article  ADS  Google Scholar 

  • Koenig, S., Lopez-Diaz, D., Antes, J., Boes, F., Henneberger, R., Leuther, A., Tessmann, A., Schmogrow, R., Hillerkuss, D., Palmer, R., et al.: Wireless sub-THz communication system with high data rate. Nat. Photon. 7(12), 977–981 (2013)

    Article  ADS  Google Scholar 

  • Kumar, P., Singh, G.: Theoretical investigation of the input impedance of gap-coupled circular microstrip patch antennas. J. Infrared Millimeter Terahertz Waves 30(11), 1148–1160 (2009)

    Article  Google Scholar 

  • Kushwaha, R.K., Karuppanan, P., Malviya, L.: Design and analysis of novel microstrip patch antenna on photonic crystal in tHz. Physica B 545, 107–112 (2018)

    Article  ADS  Google Scholar 

  • Li, Z., Guan, L., Li, C., Radwan, A.: A secure intelligent spectrum control strategy for future THz mobile heterogeneous networks. IEEE Commun. Mag. 56(6), 116–123 (2018)

    Article  Google Scholar 

  • Liberal, I., Engheta, N.: Near-zero refractive index photonics. Nat. Photon. 11(3), 149–158 (2017)

    Article  ADS  MATH  Google Scholar 

  • Malhotra, I., Jha, K.R., Singh, G.: Terahertz antenna technology for imaging applications: a technical review. Int. J. Microwave Wirel. Technol. 10(3), 271 (2018)

    Article  Google Scholar 

  • Naftaly, M., Foulds, A., Miles, R., Davies, A.: Terahertz transmission spectroscopy of nonpolar materials and relationship with composition and properties. Int. J. Infrared Millimeter Waves 26(1), 55–64 (2005)

    Article  ADS  Google Scholar 

  • Pang, L., Nakagawa, W., Fainman, Y.: Fabrication of two-dimensional photonic crystals with controlled defects by use of multiple exposures and direct write. Appl. Opt. 42(27), 5450–5456 (2003)

    Article  ADS  Google Scholar 

  • Poorgholam-Khanjari, S., Zarrabi, F.B., Jarchi, S.: Compact and wide-band quasi yagi-uda antenna based on periodic grating ground and coupling method in terahertz regime. Optik 203, 163990 (2020)

    Article  ADS  Google Scholar 

  • Rabbani, M., Ghafouri-Shiraz, H.: Size improvement of rectangular microstrip patch antenna at mm-wave and terahertz frequencies. Microwave Opt. Technol. Lett. 57(11), 2585–2589 (2015)

    Article  Google Scholar 

  • Rahim, M.A., Ibrahim, I., Kamaruddin, R., Zakaria, Z., Hassim, N.: Characterization of microstrip patch array antenna at 28 GHz. J. Telecommun. Electron. Comput. Eng. 9(2–8), 137–141 (2017)

    Google Scholar 

  • Rani, P., Kalra, Y., Sinha, R.: Realization of and gate in y shaped photonic crystal waveguide. Opt. Commun. 298, 227–231 (2013)

    Article  ADS  Google Scholar 

  • Runge, M., Engel, D., Schneider, M., Reimann, K., Woerner, M., Elsaesser, T.: Spatial distribution of electric-field enhancement across the gap of terahertz bow-tie antennas. Opt. Express 28(17), 389–398 (2020)

    Article  Google Scholar 

  • Semouchkina, E., Duan, R., Gandji, N.P., Jamilan, S., Semouchkin, G., Pandey, R.: Superluminal media formed by photonic crystals for transformation optics-based invisibility cloaks. J. Opt. 18(4), 044007 (2016)

    Article  ADS  Google Scholar 

  • Shukla, S., Ojha, S.S.: Review of various techniques available to modify parameters of microstrip patch antenna

  • Singh, K.K., Gupta, S.: Review and analysis of microstrip patch array antenna with different configurations. Int. J. Sci. Eng. Res. 4(2), 1 (2013)

    Google Scholar 

  • Son, J.-H.: Terahertz electromagnetic interactions with biological matter and their applications. J. Appl. Phys. 105(10), 102033 (2009)

    Article  ADS  Google Scholar 

  • Sood, D., Singh, G.,Tripathi, C.C., Sood, S.C., Joshi, P.: Design, fabrication and characterization of microstrip square patch antenna array for X-band applications (2008)

  • Temmar, M.N.E., Hocini, A., Khedrouche, D., Zamani, M.: Analysis and design of a terahertz microstrip antenna based on a synthesized photonic bandgap substrate using BPSO. J. Comput. Electron. 18(1), 231–240 (2019)

    Article  Google Scholar 

  • Temmar, M.N.E., Hocini, A., Khedrouche, D., Denidni, T.A.: Enhanced flexible terahertz microstrip antenna based on modified silicon-air photonic crystal. Optik 217, 164897–9 (2020)

    Article  ADS  Google Scholar 

  • Temmar, M.N.E., Hocini, A., Khedrouche, D., Denidni, T.A.: Analysis and design of mimo indoor communication system using terahertz patch antenna based on photonic crystal with graphene. Photon. Nanostruct. Fund. Appl. 43, 100867–9 (2021)

    Article  Google Scholar 

  • Turduev, M., Giden, I.H., Babayiğit, C., Hayran, Z., Bor, E., Boztuğ, Ç., Kurt, H., Staliunas, K.: Mid-infrared t-shaped photonic crystal waveguide for optical refractive index sensing. Sens. Actuators B 245, 765–773 (2017)

    Article  Google Scholar 

  • Wu, K., Cheng, Y.J., Djerafi, T., Hong, W.: Substrate-integrated millimeter-wave and terahertz antenna technology. Proc. IEEE 100(7), 2219–2232 (2012)

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by the Algerian Ministry of Higher Education and Scientific Research through funding for PRFU Project

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed Elamine Benlakehal.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Benlakehal, M.E., Hocini, A., Khedrouche, D. et al. Design and analysis of a 2 × 2 microstrip ratch antenna array based on periodic and non-periodic photonic crystals substrate in THz. Opt Quant Electron 54, 190 (2022). https://doi.org/10.1007/s11082-022-03563-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-022-03563-5

Keywords

Navigation