Skip to main content
Log in

Propagation properties of vortex cosine-hyperbolic-Gaussian beams through oceanic turbulence

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

Based on the extended Huygens–Fresnel diffraction integral, the analytical expression of the average intensity for a vortex cosine hyperbolic-Gaussian beam (vChGB) propagating in oceanic turbulence is derived in detail. From the derived formula, the propagation properties of a vChGB in oceanic turbulence, including the average intensity distribution and the beam spreading, are discussed with numerical examples. It is shown that oceanic turbulence influences strongly the propagation properties of the beam. The vChGB may propagate within shorter distance in weak oceanic turbulence by increasing the dissipation rate of mean-square temperature and the ratio of temperature to salinity fluctuation or by increasing the dissipation rate of turbulent kinetic energy per unit mass of sea water. Meanwhile, the evolution properties of the vChGB in the oceanic turbulence are affected by the initial beam parameters, namely the decentered parameter b, the topological charge M, the beam waist width ω0 and the wavelength λ. The obtained results can be beneficial for applications in optical underwater communication and remote sensing domain, imaging, and so on.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Abramowitz, M., Stegun, I.A. (eds.): Handbook of Mathematical Functions. Nat Bureau of Standards Washington, DC (1964)

    MATH  Google Scholar 

  • Andrews, L.C., Philips, R.L.: Laser beam propagation through Random media. SPIE Press, Washington (1998)

    Google Scholar 

  • Baykal, Y.: Scintillation of LED sources in oceanic turbulence. Appl. Opt. 55(31), 8860–8663 (2016)

    Article  ADS  Google Scholar 

  • Baykal, Y.: Scintillation index in strong oceanic turbulence. Opt. Commun. 375, 15–18 (2016)

    Article  ADS  Google Scholar 

  • Baykal, Y.: Intensity correlation of flat-topped beams in oceanic turbulence. J. Mod. Optics 67(9), 799–804 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  • Belafhal, A., Hricha, Z., Dalil-Essakali, L., Usman, T.: A note on some integrals involving Hermite polynomials and their applications. Adv. Math. Mod. and App. 5(3), 313–319 (2020)

    Google Scholar 

  • Born, Max, Emil Wolf, A.B.: Principles of optics: electromagnetic theory of propagation, interference and diffraction of light. Cambridge University Press (1999). https://doi.org/10.1017/CBO9781139644181

    Book  MATH  Google Scholar 

  • Casperson, L.W., Hall, D.G., Tovar, A.A.: Sinusoidal-Gaussian beams in complex optical systems. J. Opt. Soc. Am. A 14, 3341–3348 (1997)

    Article  ADS  MathSciNet  Google Scholar 

  • Ding, C., Liao, L., Wang, H., Zhang, Y., Pan, L.: Effect of oceanic turbulence on the propagation of cosine-Gaussian-correlated Schell-model beams. J. Opt. 17, 035615–035623 (2015)

    Article  ADS  Google Scholar 

  • Gradshteyn, I.S., Ryzhik, I.M.: Tables of Integrals, Series, and Product. Fifth (ed) Academic Press, New York (1994)

  • Hricha, Z., Yaalou, M., Belafhal, A.: Introduction of a new vortex cosine-hyperbolic-Gaussian beam and the study of its propagation properties in Fractional Fourier Transform optical system. Opt. Quant. Elec. 52, 296–302 (2020)

    Article  Google Scholar 

  • Hricha, Z., Lazrek, M., Yaalou, M., Belafhal, A.: Propagation of vortex cosine-hyperbolic-Gaussian beams in atmospheric turbulence. Opt. Quant. Elec. 53(8), 383–398 (2021)

    Article  Google Scholar 

  • Huang, Y.P., Zhang, B., Gao, Z.H., Zhao, G.P., Duan, Z.C.: Evolution behavior of Gaussian Schell-model vortex beams propagating through oceanic turbulence. Opt. Express 22, 17723–17734 (2014)

    Article  ADS  Google Scholar 

  • Huang, Y.P., Huang, P., Wang, F.H., Zhao, G.P., Zeng, A.P.: The influence of oceanic turbulence on the beam quality parameters of partially coherent Hermite-Gaussian linear array beams. Opt. Commun. 336, 146–152 (2015)

    Article  ADS  Google Scholar 

  • Lacroix, Y., Leandri, D., Nikishov, V.I.: Wave propagation in turbulent sea water. Int. J. Fluid Mech. Res 38(4), 366–386 (2010)

    Google Scholar 

  • Lazrek, M., Hricha, Z., Belafhal, A.: Partially coherent vortex cosh-Gaussian beam and its paraxial propagation. Opt. Quant. Elec. 53, 694 (2021)

    Article  Google Scholar 

  • Li, Y., Han, Y., Cui, Z.: On-axis average intensity of a hollow Gaussian beam in turbulent ocean. Opt. Eng. 58(9), 096115–096121 (2019)

    ADS  Google Scholar 

  • Liu, D., Wang, Y.: Properties of a random electromagnetic multi-Gaussian Schell-model vortex beam in oceanic turbulence. Appl. Phys. B 124, 176–184 (2018)

    Article  ADS  Google Scholar 

  • Liu, D.J., Wang, Y.C., Yin, H.M.: Evolution properties of partially coherent flat-topped vortex hollow beam in oceanic turbulence. Appl. Opt. 54, 10510–10516 (2015)

    Article  ADS  Google Scholar 

  • Liu, D., Wang, Y., Wang, G., Luo, X., Yin, H.: Propagation properties of partially coherent four-petal Gaussian vortex beams in oceanic turbulence. Laser Phys. 27, 016001–016008 (2017)

    Article  ADS  Google Scholar 

  • Liu, D., Yin, H., Wang, G., Wang, Y.: Propagation of partially coherent Lorentz-Gauss vortex beam through oceanic turbulence. Appl. Opt. 56, 8785–8792 (2017)

    Article  ADS  Google Scholar 

  • Nikishov, V.V., Nikishov, V.I.: Spectrum of turbulent fluctuations of the sea-water refraction index. Int. J. Fluid Mech. Res. 27, 82–98 (2000)

    Article  MathSciNet  Google Scholar 

  • Siegman, A.E.: Lasers. University Science Books, (1986).

  • Tang, M.M., Zhao, D.M.: Propagation of radially polarized beams in the oceanic turbulence. Appl. Phys. B 111, 665–670 (2013)

    Article  ADS  Google Scholar 

  • Tang, M., Zhao, D.: Regions of spreading of Gaussian array beams propagating through oceanic turbulence. Appl. Opt. 54, 3407–3411 (2015)

    Article  ADS  Google Scholar 

  • Wang, J., Wang, X., Peng, Q., Zhao, S.: Propagation characteristics of autofocusing Airy beam with power exponential phase vortex in weak anisotropic oceanic turbulence. J. of Mod. Optics 68(19), 1059–1065 (2021)

    Article  ADS  Google Scholar 

  • Xu, J.D., Zhao, M.: Propagation of a stochastic electromagnetic vortex beam in the oceanic turbulence. Opt. Laser Technol. 57, 189–193 (2014)

    Article  ADS  Google Scholar 

  • Yang, T., Ji, X.L., Li, X.Q.: Propagation characteristics of partially coherent decentered annular beams propagating through oceanic turbulence. Acta Phys. Sin. 64, 204206 (2015)

    Article  Google Scholar 

  • Zhou, G., Cai, Y., Dai, C.: Hollow Vortex Gaussian Beams. Sci. Chin. 56(5), 896–903 (2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Z. Hricha or A. Belafhal.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lazrek, M., Hricha, Z. & Belafhal, A. Propagation properties of vortex cosine-hyperbolic-Gaussian beams through oceanic turbulence. Opt Quant Electron 54, 172 (2022). https://doi.org/10.1007/s11082-022-03541-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-022-03541-x

Keywords

Navigation