Skip to main content
Log in

Design and quantitative analysis of low loss and extremely sensitive PCF-based biosensor for cancerous cell detection

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

This paper has modelled and quantitatively analyzed a hollow-core PCF to evaluate its performance as a biosensor. This biosensor is specifically designed to sense four types of cancerous cells, namely Jurkat, HeLa, MCF-7, and Basal, representing the names of blood, cervical, breast, and skin cells. The designed PCF has maintained a minimum of 0.2827 numerical aperture at 1.3 µm wavelength for the four types of cells. The effective absorption and confinement loss values have been exceptionally low for this PCF. The maximum values of these two parameters are only 2.43 × 10–7 cm−1 and 1.91 × 10–8 dB/m correspondingly at 1.3 µm. At the same wavelength, this biosensor has offered a higher value of relative sensitivity for the four types of cells that vary from 88.12% to 89.65%. In addition to these traditional values of performance indices, the simple PCF structure offers a broad likelihood of implementation using the persisting fabrication process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Availability of data

All data of this study are available inside the literature of this paper.

References

  • A. C. Society.: Breast cancer facts & figures 2019–2020. Am. Cancer Soc. 1–44 (2019)

  • Arif, M.F.H., Hossain, M.M., Islam, N., Khaled, S.M.: A nonlinear photonic crystal fiber for liquid sensing application with high birefringence and low confinement loss. Sens. Bio-Sens. Res. 22, 1–7 (2019)

    Article  Google Scholar 

  • Bise, R.T., Trevor, D.J.: Sol-gel derived microstructured fiber: fabrication and characterization. In: Optical Fiber Communication Conference, p. OWL6. Optical Society of America , 1–3 (2005)

  • Buczynski, R.: Photonic crystal fibers. Acta Physica Polonica Ser. A 106(2), 141–168 (2004)

    Article  ADS  Google Scholar 

  • Bulbul, A.A.-M., Imam, F., Awal, M., Mahmud, M.: A novel ultra-low loss rectangle-based porous-core PCF for efficient THz waveguidance: design and numerical analysis. Sensors 20(22), 1–18 (2020)

    Article  ADS  Google Scholar 

  • Bulbul, A.A.-M., Rashed, A.N.Z., El-Hageen, H.M., Alatwi, A.M.: Design and numerical analysis of an extremely sensitive PCF-based sensor for detecting kerosene adulteration in petrol and diesel. Alex. Eng. J. 60(6), 5419–5430 (2021a)

    Article  Google Scholar 

  • Bulbul, A.A.-M., Kouzani, A.Z., Mahmud, M., Nahid, A.-A.: Design and numerical analysis of a novel rectangular PCF (R-PCF)-based biochemical Sensor (BCS) in the THz Regime. Int. J. Opt. 2021, 1–16 (2021b)

    Article  Google Scholar 

  • Bulbul, A.A.-M., Jibon, R.H., Biswas, S., Pasha, S.T., Sayeed, M.A.: Photonic crystal fiber-based blood components detection in THz regime: design and simulation. Sens. Int. 2, 100081 (2021c)

    Article  Google Scholar 

  • Cubillas, A.M., et al.: Photonic crystal fibres for chemical sensing and photochemistry. Chem. Soc. Rev. 42(22), 8629–8648 (2013)

    Article  Google Scholar 

  • Dengel, L.T., et al.: Total body photography for skin cancer screening. Int. J. Dermatol. 54(11), 1250–1254 (2015)

    Article  Google Scholar 

  • Ebendorff-Heidepriem, H., Schuppich, J., Dowler, A., Lima-Marques, L., Monro, T.M.: 3D-printed extrusion dies: a versatile approach to optical material processing. Opt. Mater. Exp. 4(8), 1494–1504 (2014)

    Article  ADS  Google Scholar 

  • Eid, M.M., Rashed, A.N.Z., Bulbul, A.A.-M., Podder, E.: Mono-rectangular core photonic crystal fiber (MRC-PCF) for skin and blood cancer detection. Plasmonics 16(3), 717–727 (2021)

    Article  Google Scholar 

  • Ghazanfari, A., Li, W., Leu, M.C., Hilmas, G.E.: A novel freeform extrusion fabrication process for producing solid ceramic components with uniform layered radiation drying. Addit. Manuf. 15, 102–112 (2017)

    Google Scholar 

  • Guck, J., et al.: Optical deformability as an inherent cell marker for testing malignant transformation and metastatic competence. Biophys. J. 88(5), 3689–3698 (2005)

    Article  ADS  Google Scholar 

  • Hajba, L., Guttman, A.: Circulating tumor-cell detection and capture using microfluidic devices. TrAC Trends Anal. Chem. 59, 9–16 (2014)

    Article  Google Scholar 

  • Holliday, D.L., Speirs, V.: Choosing the right cell line for breast cancer research. Breast Cancer Res. 13(4), 1–7 (2011)

    Article  Google Scholar 

  • Hossain, M.B., Akib, T.B.A., Abdulrazak, L.F., Rana, M.M.: Numerical modeling of graphene-coated fiber optic surface plasmon resonance biosensor for BRCA1 and BRCA2 genetic breast cancer detection. Opt. Eng. 58(3), 037104-1–037104-11 (2019)

    Article  ADS  Google Scholar 

  • Islam, M.S., Cordeiro, C.M., Franco, M.A., Sultana, J., Cruz, A.L., Abbott, D.: Terahertz optical fibers. Opt. Exp. 28(11), 16089–16117 (2020)

    Article  Google Scholar 

  • Jabin, M.A., et al.: Surface plasmon resonance based titanium coated biosensor for cancer cell detection. IEEE Photon. J. 11(4), 1–10 (2019)

    Article  Google Scholar 

  • Kumar, C.S., Anbazhagan, R.: Investigation on chalcogenide and silica based photonic crystal fibers with circular and octagonal core. AEU-Int. J. Electron. Commun. 72, 40–45 (2017)

    Article  Google Scholar 

  • Kumar, P., Kumar, V., Roy, J.S.: Design of quad core photonic crystal fibers with flattened zero dispersion. AEU-Int. J. Electron. Commun. 98, 265–272 (2019)

    Article  Google Scholar 

  • Landis, S.H., Murray, T., Bolden, S., Wingo, P.A.: Cancer statistics, 1998. CA Cancer J. Clin. 48(1), 6–29 (1998)

  • Leon, M.J.B.M., Kabir, M.A.: Design of a liquid sensing photonic crystal fiber with high sensitivity, bireferingence & low confinement loss. Sens. Bio-Sens. Res. 28, 1–7 (2020)

    Article  Google Scholar 

  • Li, F.-R., Li, Q., Zhou, H.-X., Qi, H., Deng, C.-Y.: “Detection of circulating tumor cells in breast cancer with a refined immunomagnetic nanoparticle enriched assay and nested-RT-PCR,” Nanomedicine: Nanotechnology. Biol. Med. 9(7), 1106–1113 (2013)

    Google Scholar 

  • Liang, X., Liu, A., Lim, C., Ayi, T., Yap, P.: Determining refractive index of single living cell using an integrated microchip. Sens. Actuat. A 133(2), 349–354 (2007)

    Article  Google Scholar 

  • Liu, S., et al.: Surface-enhanced Raman spectroscopy measurement of cancerous cells with optical fiber sensor. Chin. Opt. Lett. 12(s1), S13001 (2014)

    Article  Google Scholar 

  • Lu, J.-Y., et al.: Terahertz air-core microstructure fiber. Appl. Phys. Lett. 92(6), 064105–1–064105–3 (2008)

    Article  ADS  Google Scholar 

  • Miller, K.D., Fidler-Benaoudia, M., Keegan, T.H., Hipp, H.S., Jemal, A., Siegel, R.L.: Cancer statistics for adolescents and young adults, 2020. CA Cancer J. Clin. 70(6), 443–459 (2020)

    Article  Google Scholar 

  • Morshed, M., Hassan, M.I., Roy, T.K., Uddin, M.S., Razzak, S.A.: Microstructure core photonic crystal fiber for gas sensing applications. Appl. Opt. 54(29), 8637–8643 (2015)

    Article  ADS  Google Scholar 

  • Olyaee, S., Naraghi, A.: Design and optimization of index-guiding photonic crystal fiber gas sensor. Photon. Sens. 3(2), 131–136 (2013)

    Article  ADS  Google Scholar 

  • Paul, B.K., et al.: Design and analysis of slotted core photonic crystal fiber for gas sensing application. Results Phys. 11, 643–650 (2018a)

    Article  ADS  Google Scholar 

  • Paul, B.K., Chakma, S., Khalek, M.A., Ahmed, K.: Silicon nano crystal filled ellipse core based quasi photonic crystal fiber with birefringence and very high nonlinearity. Chin. J. Phys. 56(6), 2782–2788 (2018b)

    Article  Google Scholar 

  • Podder, E., Jibon, R.H., Hossain, M.B., Bulbul, A.A.-M., Biswas, S., Kabir, M.A.: Alcohol sensing through photonic crystal fiber at different temperature. Opt. Photon. J. 8(10), 309–316 (2018)

    Article  ADS  Google Scholar 

  • Saitoh, K., Koshiba, M.: Single-polarization single-mode photonic crystal fibers. IEEE Photon. Technol. Lett. 15(10), 1384–1386 (2003)

    Article  ADS  Google Scholar 

  • Suresh, S.: Biomechanics and biophysics of cancer cells. Acta Mater. 55(12), 3989–4014 (2007)

    Article  ADS  Google Scholar 

  • Wang, G., Lu, Y., Duan, L., Yao, J.: A refractive index sensor based on PCF with ultra-wide detection range. IEEE J. Sel. Top. Quantum Electron. 27(4), 1–8 (2020)

    Google Scholar 

  • Yang, H., et al.: Highly sensitive graphene-au coated plasmon resonance PCF sensor. Sensors 21(3), 1–14 (2021)

    Article  ADS  Google Scholar 

  • Zhang, W., Zhang, D., Ma, X., Liu, Z., Li, F., Wu, D.: Paris saponin VII suppressed the growth of human cervical cancer Hela cells. Eur. J. Med. Res. 19(1), 1–7 (2014)

    Article  Google Scholar 

  • Zhang, P., Zhang, J., Yang, P., Dai, S., Wang, X., Zhang, W.: Fabrication of chalcogenide glass photonic crystal fibers with mechanical drilling. Opt. Fiber Technol. 26, 176–179 (2015)

    Article  ADS  Google Scholar 

  • Zhou, J., Zheng, Y., Liu, J., Bing, X., Hua, J., Zhang, H.: A paper-based detection method of cancer cells using the photo-thermal effect of nanocomposite. J. Pharm. Biomed. Anal. 117, 333–337 (2016)

    Article  Google Scholar 

Download references

Acknowledgements

Authors would like to show their gratitude to the ECE Discipline of Khulna University, Bangladesh.

Funding

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdullah Al-Mamun Bulbul.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bulbul, A.AM., Rahaman, H. & Podder, E. Design and quantitative analysis of low loss and extremely sensitive PCF-based biosensor for cancerous cell detection. Opt Quant Electron 54, 123 (2022). https://doi.org/10.1007/s11082-022-03513-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-022-03513-1

Keywords

Navigation