Skip to main content
Log in

The classification of single traveling wave solutions for the fractional coupled nonlinear Schrödinger equation

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

The main purpose of this paper is to study the single traveling wave solutions of the fractional coupled nonlinear Schrödinger equation. By using the complete discriminant system method and computer algebra with symbolic computation, a series of new single traveling wave solutions are obtained, which include trigonometric function solutions, Jacobi elliptic function solutions, hyperbolic function solutions, solitary wave solutions and rational function solutions. As you can see, we give all the classification of single traveling wave solutions for the fractional coupled nonlinear Schrödinger equation. The obtained results substantially improve or complement the corresponding conditions in the literature (Esen and Sulaiman in Optik 167:150-156, 2018), (Eslami in Appl. Math. Comput. 258:141-148, 2016), (Han et al. in Phys. Lett. 395:127217, 2021). Finally, in order to further explain the propagation of the fractional coupled nonlinear Schrödinger equation in nonlinear optics, two-dimensional and three-dimensional graphs are drawn.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abdou, M.A., Owyed, S., Abdelaty, A., et al.: Optical soliton solutions for a space-time fractional perturbed nonlinear Schrödinger equation arising in quantum physics. Results Phys. 16, 102895 (2020)

    Article  Google Scholar 

  • Bekir, A., Guner, O., Bhrawy, A.H., Biswas, A.: Solving nonlinear frational differential equations using exp-function and \(\frac{G^{\prime }}{G}\)-expansion methods. Rom. J. Phys 60, 360–378 (2015)

  • Bountis, T., Vanhaecke, P.: Lotka-Volterra systems satisfying a strong painlevé property. Phys. Lett. A. 380, 3977–3982 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Boyd, R.W.: Nonlinear Optics. Academic, San Diego (1992)

    Google Scholar 

  • Chen, C., Jiang, Y.L., Wang, Z.L., et al.: Dynamical behavior and exact solutions for time-fractional nonlinear Schrödinger equation with parabolic law nonlinearity. Optik 222, 165331 (2020)

    Article  ADS  Google Scholar 

  • Choi, J.H., Kim, H., Zhang: Soliton solutions for the space-time nonlinear partial differential equations with fractional-orders. Chin. J. Phys. 55, 556–565 (2017)

    Article  Google Scholar 

  • Das, A., Ghosh, N., Ansari, K.: Bifurcation and exact traveling wave solutions for dual power Zakharov-Kuznetsov-Burgers equation with fractional temporal evolution. Comupt. Math. Appl. 75, 59–69 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  • Dehghan, M., Manafian, J., Saadatmandi, A.: Analytical treatment of some partial differential equations arising in mathematical physics by using the Exp-function method. Int. J. Mod. Phys. B. 25, 2965–2981 (2011)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Du, L.X., Sun, Y.H., Wu, D.S.: Bifurcations and solutions for the generalized nonlinear Schrödinger equation. Phys. Lett. A 383, 126028 (2019)

    Article  MATH  Google Scholar 

  • EI-Shiekh, R.M.: Classes of new exact solutions for nonlienar Schrödinger equations with variable coefficients arising in optical fiber. Results Phys. 13, 102214 (2019)

    Article  Google Scholar 

  • EI-Shiekh, R.M., Gaballah, M.: Solitary wave solutions for the variable-coefficient coupled nonlinear Schrödinger equations and Davey-Stewartson system using modified sine-Gordon equation method. J. Ocean Eng. Sci. 5, 180–185 (2020)

    Article  Google Scholar 

  • Elsayed, M.E., Reham, M.A., Biswas, A., et al.: Dispersive solitons in optical fibers and DWDM networks with Schrödinger-Hirota equation. Optik 199, 163214 (2019)

    Article  ADS  Google Scholar 

  • Esen, A., Sulaiman, T.A., et al.: Optical solitons to the space-time fractional \((1+1)\)-dimensional coupled nonlinear Schrödinger equation. Optik 167, 150–156 (2018)

  • Eslami, M.: Exact traveling wave solutions to the fractional coupled nonlinear Schrodinger equations. Appl. Math. Comput. 285, 141–148 (2016)

    MathSciNet  MATH  Google Scholar 

  • Gadzhimuradov, T.A., Agalarov, A.M., Radha, R., Tamil Arasan, B.: Dynamics of solitons in the fourth-order nonlocal nonlinear Schrödinger equation. Nonlinear Dyn. 99, 1295–1300 (2020)

    Article  MATH  Google Scholar 

  • Ganaini, S.E., Alamr, M.O.: New abundant wave solutions of the conformable space-time fractional (4+1)-dimensional Fokas equation in water waves. Comupt. Math. Appl. 78, 2094–2106 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  • Ghanbari, B., Osman, M.S., Baleanu, D.: Generalized exponential rational function method for extended Zakharov-Kuzetsov equation with conformable derivative. Mod. Phys. Lett. A. 34, 1950155 (2019)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Guo, Q., Liu, J.: New exact solutions to the nonlienar Schrödinger equation with variable coefficients. Results Phys. 16, 102857 (2020)

    Article  Google Scholar 

  • Hammad, M.A., Khalil, R.: Conformable fractional heat differential equation. Int. J. Pure Appl. Math. 94, 215–221 (2014)

    Google Scholar 

  • Han, T.Y., Li, Z., Zhang, X.: Bifurcation and new exact traveling wave solutions to time-space coupled fractional nonlinear Schrödinger equation. Phys. Lett. A 395, 127217 (2021)

    Article  MATH  Google Scholar 

  • Hosseini, K., Ansari, R., Samadani, F., et al.: High-order disperive cubic-quintic Schrödinger equation and its exact solutions. Optik 136, 203–207 (2019)

    Google Scholar 

  • Huang, Y.: New no-traveling wave solutions for the Liouville equation by B\(\ddot{a}\)cklund transformation method. Nonlinear Dyn. 71, 87–90 (2013)

  • Jumarie, G.: Modified Riemann-Liouville derivative and fractional Taylor series of nondifferentiable functions further results. Comupt. Math. Appl. 51, 1367–1376 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  • Khalil, R., Horani, A., Yousef, A., et al.: A new definition of fractional derivative. J. Comp. Appl. Math. 264, 65–70 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  • Khodadad, F.S., Nazari, F., et al.: Soliton solutions of the conformable fractional Zakharov-Kuznetsov equation with dual-power law nonlinearity. Opt. Quant. Electron. 49, 384 (2017)

    Article  Google Scholar 

  • Li, C.C., Chen, L.W., Li, G.H.: Optical solitons of space-time fractional Sasa-Satsuma equation by F-expansion method. Optik 224, 165527 (2020)

    Article  ADS  Google Scholar 

  • Li, Y., Lu, D.C., Arshad, M., Xu, X.: New exact traveling wave solutons of the unstable nonlinar Schrödinger equations and their applications. Optik 226, 165386 (2021)

    Article  ADS  Google Scholar 

  • Llhan, O.A., Manafian, J., Alizadeh, A., Baskonus, H.M.: New exact solutions for nematicons in liquid crystals by the \(\tanh (\phi /2)\)-expansion method arising in fluid mechanics. Eur. Phys. J. Plus. 125, 313 (2020)

  • Lu, Q.C., Llhan, O.A., Manafian, J., Avazpour, L.: Multiple rogue wave solutions for a variable-coefficient Kadomtsev-Petviashvili equation. Int. J. Comput. Math. 98, 1457–1473 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  • Ma, W.X., Strampp, W.: An explicit symmetry constraint for the Lax pairs and the adjoint Lax pairs of AKNS systems. Phys. Lett. A. 185, 277–286 (1999)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Manafian, J.: On the complex structures of the Biswas-Milovic equation for power, parabolic and dual parabolic law nonlinearities. Eur. Phys. J. Plus. 130, 1–20 (2015)

    Article  Google Scholar 

  • Manafian, J.: Optical soliton solutions for Schrödinger type nonlinear evolution equations by the \(\tan (\Phi (\xi )/2)\)-expansion method. Optik 127, 4222–4245 (2016)

  • Manafian, J., Llhan, O.A., Mohammed, S.A.: Forming localized waves of the nonlinearity of the DNA dynamics arising in oscillator-chain of Peyrard-Bishop model. Aims Math. 5, 2461–2483 (2020)

    Article  MathSciNet  Google Scholar 

  • Manafian, J., Llhan, O.A., Mohammed, S.A., et al.: Cross-kink wave solutions and semi-inverse variational method for (3 + 1)-dimensional potential-YTSF equation. East Asian J. Appl. Math. 10, 549–565 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  • Marinakis, V., Bountis, T.: Special solutions of a new class of water wave equations. Comm. Appl. Anal. 4, 433–445 (2000)

    MathSciNet  MATH  Google Scholar 

  • Parks, E.J., Duffy, B.R., Abbott, P.C.: The Jacobi elliptic function method for fingding periodic wave solutions to nonlinear evolution equations. Phys. Lett. A. 295, 280–286 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  • Rezazadeh, H., Abazari, R., Khater, M.A., et al.: New optical solitons of conformable resonant nonlinear Schrödinger’s equation. Open Phys. 18, 761–769 (2020)

    Article  Google Scholar 

  • Sabrina, S.D., Caruso, N.D., Tarzia, D.A.: Explicit solutions to fractional Stefan-like problems for Caputo and Riemann-Liouville derivatives. Nonlinear Sci. Numer. Simul. 90, 105361 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  • Sarwar, S.: New Rational Solutions of fractional-order Sharma-Tasso-Olever equation with Atangana-Baleanu derivative arising in physical sciences. Results Phys. 19, 103621 (2020)

    Article  Google Scholar 

  • Shi, D.D., Zhang, Y.F.: Diversity of exact solutions to the conformable space-time fractional MEW equation. Appl. Math. Lett. 99, 105994 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  • Sulaiman, T.A., Bulut, H.: Optical solitons and modulation instability analysis of the \((1 + 1)\)-dimensional coupled nonlinear Schrödinger equation. Commun. Theor. Phys. 72, 025003 (2020)

  • Tang, L.: Exact solutions to conformable time-fractional Klein-Gordon equation with high-order nonlinearities. Results Phys. 18, 103289 (2020)

    Article  Google Scholar 

  • Tang, L.: Dynamical behavior and traveling wave solutions in optical fibers with Schrödinger-Hirota equation. Optik 245, 167750 (2021)

    Article  ADS  Google Scholar 

  • Tang, L., Chen, S.P.: Traveling wave solutions for the diffusive Lotka-Volterra equations with boundary problems. Appl. Math. Comput. 413, 126599 (2022)

    MathSciNet  MATH  Google Scholar 

  • Tchier, F., Aslan, E.C., Inc, M.: Optical solitons in parabplic law medium: Jacobi elliptic function solution. Nonlinear Dyn. 85, 2577–2582 (2016)

    Article  Google Scholar 

  • Tzirtzilakis, E., Marinakis, V., Apokis, C., Bountis, T.: Soliton-like solutions of higer order water wave equations of the Kdv type. J. Math. Phys. 43, 6151–6165 (2002)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Tzirtzilakis, E., Xenos, M., Marinakis, V., Bountis, T.: Interactions and stability of solitary waves in shallow water. Chaos Solitons Fract. 14, 87–95 (2002)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Weiss, J., Tabor, M., Carnevale, G.: The Painlevé property for partial differential equations. J. Math. Phys. 24, 522–526 (1983)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Wen, Z.S.: The generalized bifurcation method for deriving exact solutions of nonlinear space-time fractional partial differential equations. Appl. Math. Comput. 366, 124735 (2020)

    MathSciNet  MATH  Google Scholar 

  • Xie, Y.Y., Yang, Z.Y., Li, L.F.: New exact solutions to the high dispersive cubic-quintic nonlinear Schrödinger equation. Phys. Lett. A. 382, 2506–2514 (2018)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Yang, L., Hou, X.Y., Zeng, Z.B.: Compete discrimation system for polynomial. Sci China Ser E. 26, 628–646 (1996)

    Google Scholar 

  • Younis, M.: The first integral method for time-space fractional differential equations. J. Adv. Phys. 2, 220–223 (2013)

    Article  Google Scholar 

  • Zhang, Z.Y., Liu, Z.H., Miao, X.J., et al.: Qualitative analysis and traveling wave solutions for the perturbed nonlienar Schrödinger equation with Kerr law nonlienarity. Phys. Lett. A. 375, 1275–1280 (2011)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Zhang, Y.J., Yang, C.Y., Yu, W.T., et al.: Intercations of vector anti-dark solitons for the coupled nonlinear Schrödinger equation in inhomogeneous fibers. Nonlinear Dyn. 94, 1351–1360 (2018)

    Article  Google Scholar 

  • Zheng, Y., Lai, S.Y.: Peakons, solitary patterns and periodic solutions for generalized Camassa-Holm equations. Phys. Lett. A. 372, 4141–4143 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by the Specialized Research Fund for the Doctoral Program of Higher Education of China under Grant No.20115134110001. The authors would like to thank the anonymous reviewers for their helpful suggestions and constructive comments for improving the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lu Tang.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest regarding the publication of this paper. The authors declare that this paper is original.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, L., Chen, S. The classification of single traveling wave solutions for the fractional coupled nonlinear Schrödinger equation. Opt Quant Electron 54, 105 (2022). https://doi.org/10.1007/s11082-021-03496-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-021-03496-5

Keywords

Navigation