Skip to main content
Log in

Carrier transport effect on the high speed modulation performance of integrated optoelectronic transceiving chip

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

In this paper, we analyzed the carrier transport effect on the high-speed modulation performance of the integrated optoelectronic transceiving chip (IOTC). It will be determined by the hole transporting time through the p-side cladding layer of the IOTC VCSEL unit's intrinsic SCH cavity. For IOTC with long cavity length (1λ), shorter hole transporting time will result in better dynamic performance, obtaining 3 dB modulation bandwidth from 9.55 to 11.2 GHz. For IOTC with short cavity length (1/2λ), longer hole transporting time will result in better dynamic performance, obtaining 3 dB modulation bandwidth from 8.75 to 11.1 GHz.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

All data generated or analysed during this study are included in this published article.

References

  • Balanici, M., Pachnicke, S.: Hybrid electro-optical intra-data center networks tailored for different traffic classes. J. Opt. Commun. Netw. 10, 889–901 (2018)

    Article  Google Scholar 

  • “Cisco Global Cloud Index: Forecast and Methodology, 2015–2020,” Cisco White Paper. (2016). Available: https://www.cisco.com/c/dam/m/en_us/service-provider/ciscoknowledgenetwork/files/622_11_15–16-Cisco_GCI_CKN_2015- 2020_AMER_EMEAR_NOV2016.pdf, pp. 1–29 (2016).

  • “Cisco Global Cloud Index: Forecast and Methodology, 2016– 2021,” Cisco White Paper. (2018). Available: https://www.cisco.com/c/en/us/solutions/collateral/service-provider/global-cloud-index-gci/white-paper-c11–738085.pdf, pp. 1–46 (2018).

  • Cheng, Q.X., Bahadori, M., Glick, M., Rumley, S., Bergman, K.: Recent advances in optical technologies for data centers: a review. Optica 5, 1354–1370 (2018)

    Article  ADS  Google Scholar 

  • Emara, T.-Z., Huang, J.Z.: Distributed data strategies to support large-scale data analysis across geo-distributed data centers. IEEE Access 8, 178526–178538 (2020)

    Article  Google Scholar 

  • Feng, M., Wu, C.-H., Holonyak, N., Jr.: Oxide-confined VCSELs for high-speed optical interconnects. IEEE J. Quantum Electron. 54(3), 2400115 (2018)

    Google Scholar 

  • Healy, S.B.: Active region design for high-speed 850-nm VCSELs. IEEE J. Quantum Electron. 46, 506–512 (2010)

    Article  ADS  Google Scholar 

  • Larsson, A.G., Gustavsson, J.S., Haglund, E.: VCSEL modulation speed: status and prospects, Proceeding of SPIE 10938, Vertical-cavity Surface-emitting Lasers XXIII, 1–6 (2019)

  • Li, Z.-M., Dzurko, K.M., Dellge, A., McAlister, S.P.: A self-consistent two-dimensional model of quantum-well semiconductor lasers: optimization of a GRIN-SCH SQW laser structure. IEEE J. Quantum Electron. 28(4), 792–803 (1992)

    Article  ADS  Google Scholar 

  • Lim, K.S., Yu, H.Y., Park, H.J., Kang, H.S., Jang, J.H.: Bidirectional optical subassembly-shaped 20-Gbit/s compact single-mode four-channel wavelength-division multiplexing optical modules for optical multimedia interfaces. Opt. Eng. 55, 066123: 1–7 (2016)

    Article  ADS  Google Scholar 

  • Liu, A., Wolf, P., Lott, J.A., Bimberg, D.: Vertical-cavity surface-emitting lasers for data communication and sensing. Photonics Res. 7, 121–136 (2019a)

    Article  Google Scholar 

  • Liu, K., Wei, Q., Huang, Y.Q., Duan, X.F., Wang, Q., Ren, X.M., Cai, S. W.: Integrated optoelectronic chip pair for transmitting and receiving optical signals simultaneously. Chin. Opt. Lett. 17, 041301 (2019)

    Article  ADS  Google Scholar 

  • Liu, K., Fan, H.Z., Huang, Y.Q., Duan, X.F, Wang, Q., Ren, XM., Wei, Q., Cai, S.W.: A pair of integrated optoelectronic transceiving chips for optical interconnects, Chin. Opt. Lett. 16, 091301 (2018)

  • Michalzik, R., Kern, A., Stach, M., Rinaldi, F., Wahl, D. : True bidirectional optical interconnects over multimode fiber, Optoelectronic Interconnects and Component Integration IX, San Francisco, California, United States, Proceedings of SPIE - The International Society for Optical Engineering, 2010, 760796, 76070B (2010)

  • Ou, Y., Gustavsson, J.S., Westbergh, P., Haglund, A., Larsson, A., Joel, A.: Impedance characteristics and parasitic speed limitations of high-speed 850-nm VCSELs. IEEE Photon. Technol. Lett. 21, 1840–1842 (2009)

    Article  ADS  Google Scholar 

  • Philip, M., James, A.L., Gunter, L., Dieter, B.: Impact of the oxide-aperture diameter on the energy efficiency, bandwidth, and temperature stability of 980-nm VCSELs. J. Lightwave Technol. 33(4), 825–831 (2015)

    Article  Google Scholar 

  • Radhakrishnan, N., Masayuki, I., Toru, F., Randall, S.G., John, E.B.: High speed quantum-well lasers and carrier transport effects. IEEE J. Quantum Electron. 28(10), 1990–2008 (1992)

    Article  Google Scholar 

  • Tatum, J.A., Gazula, D., Graham, L.A., Guenter, J.K., Johnson, R.H., King, J., Kocot, C., Landry, G.D., Lyubomirsky, I., MacInnes, A.N., Shaw, E.M., Balemarthy, K., Shubochkin, R., Vaidya, D., Yan, M., Tang, F.: VCSEL-based interconnects for current and future data centers. J. Lightwave Technology 33, 727–732 (2015)

    Article  ADS  Google Scholar 

  • Wenzel, H., Wunsche, H.-J.: The effective frequency method in the analysis of vertical-cavity surface-emitting lasers. IEEE J. Quantum Electron. 33(7), 1156–1162 (1997)

    Article  ADS  Google Scholar 

  • Westbergh, P., Gustavsson, J.S., Haglund, Â., Skold, M., Joel, A., Larsson, A.: High-speed, low-current-density 850 nm VCSELs. IEEE J. Sel. Top. Quantum Electron. 15(3), 694–703 (2009)

    Article  ADS  Google Scholar 

  • Westbergh, P., Gustavsson, J.S., Kgel, B., Haglund, A., Larsson, A.: Impact of photon lifetime on high-speed VCSEL performance. IEEE J Sel. Top. Quantum Electron. 17(6), 1603–1613 (2012)

    Article  ADS  Google Scholar 

  • Xie, C.: Optical technologies for hyperscale cloud computing. In: Asia Communications and Photonics Conference/International Conference on Information Photonics and Optical Communications 2020 (ACP/IPOC) 24–27 October 2020, Beijing, China, S2A.3 (2020)

Download references

Funding

This work was supported in part by the National Natural Science Foundation of China (Grant No. 61874147, 61674020, 61674018 and 61904016), in part by the National Key Research and Development Program of China (Grant No. 2018YFB2200803 and 2018YFB2200104) and in part by Beijing Municipal Science & Technology Commission (Grant No.191100004819012).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kai Liu.

Ethics declarations

Conflict of interest

Employment: Beijing University of Posts and Telecommunications. Financial interests: No. Non-financial interests: No.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, K., Huang, Y., Duan, X. et al. Carrier transport effect on the high speed modulation performance of integrated optoelectronic transceiving chip. Opt Quant Electron 54, 92 (2022). https://doi.org/10.1007/s11082-021-03478-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-021-03478-7

Keywords

Navigation