Skip to main content
Log in

Optical modulator using ultra-thin silicon waveguide in SOI hybrid technology

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

We propose a detailed study of an on-chip optical modulator using a non-conventional silicon-based platform. This platform is based on the optimum design of ultra-thin silicon on insulator waveguide. This platform is characterized by low field confinement inside the core waveguide and high sensitivity to the cladding index. Accordingly, it lends itself to a wide range of applications, such as sensing and optical modulation. By employing this waveguide into the Mach–Zehnder interferometer configuration, an efficient optical modulator is reported using an organic polymer as an active material for the electro-optic effect. An extinction ratio of more than 20 dB is achieved with energy per bit of 13.21 fJ/bit for 0.5 V applied voltage. This studied platform shows promising and adequate performance for modulation applications. It is cheap and easy to fabricate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Data and material availability

Authors will make readily reproducible materials described in the manuscript, including new software, databases and all relevant raw data, freely available to any scientist wishing to use them, without breaching participant confidentiality. Authors will make their new software, databases, application/tool described in the manuscript available for testing by reviewers in a way that preserves the reviewers’ anonymity.

References

  • Abdeen, A. S., et al.: High efficiency compact Bragg sensor. 2016 Photonics North (PN). (2016)

  • Alloatti, L., et al.: 100 GHz silicon–organic hybrid modulator. Light Sci. Appl. 3(5), e173–e173 (2014)

    Article  Google Scholar 

  • Ayoub, A., Swillam, M.: Ultra-sensitive silicon-photonic on-chip sensor using microfabrication technology, SPIE. (2017)

  • Ayoub, A. B., Swillam, M. A.: High performance silicon Mach-Zehnder interferometer based photonic modulator. 2017 International Applied Computational Electromagnetics Society Symposium—Italy (ACES). (2017)

  • Ayoub, A., Swillam, M.: High-performance optical modulator using ultra-thin silicon waveguide in SOI technology, SPIE. (2018)

  • Baehr-Jones, T., et al.: High-Q ring resonators in thin silicon-on-insulator. Appl. Phys. Lett. 85(16), 3346–3347 (2004)

    Article  ADS  Google Scholar 

  • Baehr-Jones, T., et al.: Nonlinear polymer-clad silicon slot waveguide modulator with a half wave voltage of 0.25V. Appl. Phys. Lett. 92, 10, 1663303, 1–3 (2008)

  • Bahadori, M., et al.: High performance fully etched isotropic microring resonators in thin-film lithium niobate on insulator platform. Opt. Express 27, 22025–22039 (2019)

    Article  ADS  Google Scholar 

  • Chen, L., et al.: Integrated GHz silicon photonic interconnect with micrometer-scale modulators and detectors. Opt. Express 17(17), 15248–15256 (2009)

    Article  ADS  Google Scholar 

  • Cocorullo, G., Rendina, I.: Thermo-optical modulation at 1.5μm in silicon etalon. Electron. Lett. 28, 83–85 (1992)

    Article  ADS  Google Scholar 

  • Dalton, L.R., et al.: Polymeric electro-optic modulators: matereials synthesis and processing. Adv. Mater. 7(6), 519–540 (1995)

    Article  Google Scholar 

  • Dalton, L.R., et al.: Electric field poled organic electro-optic materials: state of the art and future prospects. Chem. Rev. 110, 25–55 (2010)

    Article  Google Scholar 

  • Ding, R., et al.: Demonstration of a low VπL modulator with GHz bandwidth based on electro-optic polymer-clad silicon slot waveguides. Opt. Express 18, 15618–15623 (2010)

    Article  ADS  Google Scholar 

  • Dong, P., et al.: Low Vpp, ultralow-energy, compact, high-speed silicon electro-optic modulator. Opt. Express 17(25), 22484–22490 (2009)

    Article  ADS  Google Scholar 

  • FDE tool: https://www.lumerical.com/

  • Fernández Gavela, A., et al.: Last advances in silicon-based optical biosensors. Sensors 16(3), 1–15 (2016)

  • He, L., et al.: Ultrathin silicon-on-insulator grating couplers. IEEE Photonics Technol. Lett. 24(24), 2247–2249 (2012)

    Article  ADS  Google Scholar 

  • Hochberg, M., et al.: Towards a millivolt optical modulator with nano-slot waveguides. Opt. Express 15, 8401–8410 (2007)

    Article  ADS  Google Scholar 

  • Kieninger, C., et al.: Silicon-organic hybrid (SOH) Mach-Zehnder modulators for 100 GBd PAM4 signaling with sub-1 dB phase-shifter loss. Opt. Express 28, 24693–24707 (2020)

    Article  ADS  Google Scholar 

  • Kim, T.-D., et al.: Ultralarge and thermally stable electro-optic activities from supramolecular self-assembled molecular glasses. J. Am. Chem. Soc. 129(3), 488–489 (2007)

    Article  Google Scholar 

  • Lin, C.Y., et al.: Electro-optic polymer infiltrated silicon photonic crystal slot waveguide modulator with 23 dB slow light enhancement. Appl. Phys. Lett. 97, 093304, 1–4 (2010)

  • Liu, J., et al.: Recent advances in polymer electro-optic modulators. RSC Adv. 5, 15784–15794 (2015)

    Article  ADS  Google Scholar 

  • Luo, J., et al.: Phenyltetraene-based nonlinear optical chromophores with enhanced chemical stability and electrooptic activity. Org. Lett. 9, 4471–4474 (2007)

    Article  Google Scholar 

  • Opti-FDTD, Opti-wave, Inc. 〈http://www.optiwave.com>

  • Ozbay, E.: Plasmonics: merging photonics and electronics at nanoscale dimensions. Science 311(5758), 189–193 (2006)

    Article  ADS  Google Scholar 

  • Qiu, F., et al.: Ultra-thin silicon/electro-optic polymer hybrid waveguide modulators. Appl. Phys. Lett. 107(12), 123302, 1–6 (2015)

  • Reed, G.T., et al.: Silicon optical modulators. Nat. Photon. 4(8), 518–526 (2010)

    Article  ADS  Google Scholar 

  • Sato, H., et al.: Low driving voltage Mach-Zehnder interference modulator constructed from an electro-optic polymer on ultra-thin silicon with a broadband operation. Opt. Express 25, 768–775 (2017)

    Article  ADS  Google Scholar 

  • Timurdogan, E., et al.: An ultralow power athermal silicon modulator. Nat. Commun. 5(1), 4008, 1–11 (2014)

  • Wang, X., et al.: Effective in-device r33 of 735 pm/V on electro-optic polymer infiltrated silicon photonic crystal slot waveguides. Opt. Lett. 36, 882–884 (2011)

    Article  ADS  Google Scholar 

  • Wang, C., et al.: Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages. Nature 562, 101–104 (2018)

    Article  ADS  Google Scholar 

  • Wang, C., et al.: Nanophotonic lithium niobate electro-optic modulators. Opt. Express 26, 1547–1555 (2018)

    Article  ADS  Google Scholar 

  • Weigel, P.O., et al.: Bonded thin film lithium niobate modulator on a silicon photonics platform exceeding 100 GHz 3-dB electrical modulation bandwidth. Opt. Express 26, 23728–23739 (2018)

    Article  ADS  Google Scholar 

  • Xiao, X., et al.: High-speed, low-loss silicon Mach-Zehnder modulators with doping optimization. Opt. Express 21(4), 4116–4125 (2013)

    Article  ADS  Google Scholar 

  • Zhang, X., et al.: Polymer-based hybrid-integrated photonic devices for silicon on-chip modulation and board-level optical interconnects. IEEE J. Sel. Top. Quantum Electron. 19, 196–210 (2013a)

    Article  ADS  Google Scholar 

  • Zhang, X., et al.: Wide optical spectrum range, subvolt, compact modulator based on an electro-optic polymer refilled silicon slot photonic crystal waveguide. Opt. Lett. 38, 4931–4934 (2013b)

    Article  ADS  Google Scholar 

  • Zhang, X., et al.: High performance optical modulator based on electro-optic polymer filled silicon slot photonic crystal waveguide. J. Lightwave Technol. 34, 2941–2951 (2016)

    Article  ADS  Google Scholar 

  • Zhang, M., et al.: Monolithic ultra-high-Q lithium niobate microring resonator. Optica 4, 1536–1537 (2017)

    Article  ADS  Google Scholar 

  • Zhou, L., Xie, J., Lu, L., Zou, Z., Sun, X., Chen, J.: Coupled-resonator-induced-transparency in cascaded self-coupled optical waveguide (SCOW) resonators. In: Asia Communications and Photonics Conference, OSA Technical Digest (online) (Optical Society of America, 2012), paper ATh4B.2

  • Zou, Z., et al.: 60-nm-thick basic photonic components and bragg gratings on the silicon-on-insulator platform. Opt. Express 23(16), 20784–20795 (2015)

    Article  ADS  Google Scholar 

  • Zwickel, H., et al.: Verified equivalent-circuit model for slot-waveguide modulators. Opt. Express 28, 12951–12976 (2020)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was made possible by a NPRP award [NPRP 7-456-1-085] from the Qatar National Research Fund (member of the Qatar Foundation). The statements made herein are solely the responsibility of the authors.

Author information

Authors and Affiliations

Authors

Contributions

ABA conceived the basic idea and validated the concept of operation through computer-aided simulations. MAS supervised the entire project. All the authors contributed to the general discussion and revision of the manuscript.

Corresponding author

Correspondence to Mohamed A. Swillam.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Optical and Quantum Sciences in Africa.

Guest edited by Salah Obayya, Alex Quandt, Andrew Forbes, Malik Maaza, Abdelmajid Belafhal and Mohamed Farhat.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ayoub, A.B., Swillam, M.A. Optical modulator using ultra-thin silicon waveguide in SOI hybrid technology. Opt Quant Electron 54, 181 (2022). https://doi.org/10.1007/s11082-021-03467-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-021-03467-w

Keywords

Navigation