Skip to main content
Log in

Precise determination of optical band gap in Cr-doped semiconductor nanowires

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

Pristine and chromium-doped ZnO nanowires were prepared following the traditional co-precipitation method. X-ray diffraction data identified a pure wurtzite hexagonal crystal structure characteristic for ZnO, irrespective of the doping level. The particle size, as deduced form Williamson–Hall plots, was found to be 45–55 nm for all samples. Scanning electron microscopy revealed a clear nanowires morphology for the pure and doped samples, while elemental analysis ensured the successful Cr-doping. Distinct spectroscopic signatures of Cr-doping were revealed from a detailed deconvolution process applied to optical spectra of doped samples, where Cr3+ optical transitions were unambiguously identified at ~ 420 and ~ 665 nm. Particularly relevant, is the spectral decomposition here performed for the superimposed absorption edge (~ 385 nm) and Cr3+  optical resonance at ~ 420 nm, allowing to claim practically doping-independent optical band gap behavior in the present doping regime. This is further supported by identifying the characteristic ZnO near edge photoluminescence peak (~ 392 nm) which maintains fixed wavelength after Cr-doping. These findings contrast earlier studies on Cr-doped semiconductor nanoparticles and glass systems where the optical band gap has been largely underestimated. We attribute the inconsistence band gap values reported in literature for Cr-doped semiconductors to the proximity of Cr optical transitions to the semiconductor absorption edge.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Ahmad, F.: Study the effect of alkali/alkaline earth addition on the environment of borochromate glasses by means of spectroscopic analysis. J. Alloys Comp. 586, 605–610 (2014)

    Google Scholar 

  • Akshay, V.R., Arun, B., Mandal, G., Vasundhara, M.: Visible range optical absorption, Urbach energy estimation and paramagnetic response in Cr-doped TiO2 nanocrystals derived by a sol–gel method. Phys. Chem. Chem. Phys. 21, 12991–13004 (2019)

    Google Scholar 

  • Andriotis, A.N., Menon, M.: Band gap engineering via doping: A predictive approach, J. Appl. Phys. 117, 125708(1–9) (2015)

  • Asemi, M., Maleki, S., Ghanaatshoar, M.: Cr-doped TiO2-based dye-sensitized solar cells with Cr-doped TiO2 blocking layer. J. Sol-Gel Sci. Technol. 81, 645–651 (2017)

    Google Scholar 

  • Chittan, M.V.: Estimation of lattice strain in nanometer-sized alumina doped ZnO ceramics by X-ray peak profile analysis. Mater. Today-Proc. 4, 9237–9245 (2017)

    Google Scholar 

  • Choi, J.Y., Heo, K., Cho, K.-S., Hwang, S.W., Chung, J., Kim, S., Lee, B.H., Lee, S.Y.: Effect of Si on the energy band gap modulation and performance of silicon indium zinc oxide thin-film transistors. Sci. Rep. 7, 15331–15392 (2017)

    ADS  Google Scholar 

  • Choudhury, B., Choudhury, A.: Structural, optical and ferromagnetic properties of Cr doped TiO2 nanoparticles Biswajit Choudhury, Amarjyoti Choudhury. Mater. Sci. Eng. B 178, 794–800 (2013)

    Google Scholar 

  • Cui, J.: Zinc oxide nanowires. Mater. Charact. 64, 43–52 (2012)

    Google Scholar 

  • Das, B.K., Das, T., Parashar, K., Parashar, S.K.S., Kumar, R., Anupama, A.V., Sahoo, B.: Effect of Cr doping on structural, optical and dielectric properties of ZnO nanoceramics synthesized by mechanical alloying. Electron. Mater. Lett. 16, 255–263 (2020)

    ADS  Google Scholar 

  • Dhand, C., Dwivedi, N., Loh, X.J., Ying, A.N.J., Verma, N.K., Beuerman, R.W., Lakshminarayanan, R., Ramakrishna, S.: Methods and strategies for the synthesis of diverse nanoparticles and their applications: a comprehensive overview. RSC Adv. 5, 105003–105037 (2015)

    ADS  Google Scholar 

  • Dubey, R.S., Singh, S.: Investigation of structural and optical properties of pure and chromium doped TiO2 nanoparticles prepared by solvothermal method. Results Phys. 7, 1283–1288 (2017)

    ADS  Google Scholar 

  • Ferreira, D.L., Sousa, J.C.L., Maronesi, R.N., Bettini, J., Schiavon, M.A., Teixeira, A.V.N.C., Silva, A.G.: Size-dependent bandgap and particle size distribution of colloidal semiconductor nanocrystals, J. Chem. Phys. 147, 154102 (1–9) (2017)

  • Galdámez-Martinez, A., Santana, G., Güell, F., Martínez-Alanis, P.R., Dutt, A: Photoluminescence of ZnO nanowires: a review. Nanomaterials 10(5), 857 (2020). https://doi.org/10.3390/nano10050857

    Article  Google Scholar 

  • Gao, F.: Effects of quantum confinement and shape on band gap of core/shell quantum dots and nanowires, Appl. Phys. Lett. 98, 193105(1–3) (2011)

  • Gaponeko, S.V., Demir, H.V.: Applied Nanophotonics. Cambridge University Press, Cambridge (2019)

    Google Scholar 

  • Gates-Rector, S.D., Blanton, T.N.: The powder diffraction file: a quality materials characterization database. Powder Diffr. 34, 352–360 (2019)

    ADS  Google Scholar 

  • Habib, I.Y., Tajuddin, A.A., Noor, H.A., Lim, C.M., Mahadi, A.H., Kumara, N.T.R.N.: Enhanced carbon monoxide sensing properties of Chromium doped ZnO nanostructures, Sci. Rep. 9, 9207(1–12) (2019)

  • Hassan, M.A.: Effect of halides addition on the ligand field of chromium in alkali borate glasses. J. Alloys Comp. 574, 391–397 (2013)

    Google Scholar 

  • Hassan, M.A., Ahmad, F., Abd El-Fattah, Z.M.: Novel identification of ultraviolet/visible Cr6+/Cr3+ optical transitions in borate glasses, J. Alloys Comp. 750, 320–327 (2018)

  • Hassan, M.A., Ebrahim, F.M., Moustafa, M.G., Abd El-Fattah, Z.M., El-Okr, M.M.: Unraveling the hidden Urbach edge and Cr6+ optical transitions in borate Glasses, J. Non-Cryst. Solids 515, 157–164 (2019)

  • Heuer-Jungemann, A., Feliu, N., Bakaimi, I., Hamaly, M., Alkilany, A., Chakraborty, I., Masood, A., Casula, M.F., Kostopoulou, A., Oh, E., Susumu, K., Stewart, M.H., Medintz, I.L., Stratakis, E., Parak, W.J., Kanaras, A.G.: The role of ligands in the chemical synthesis and applications of inorganic nanoparticles. Chem. Rev. 119(8), 4819–4880 (2019)

    Google Scholar 

  • Hines, M.A., Scholes, G.D.: Colloidal PbS nanocrystals with size-tunable near infrared emission: observation of post-synthesis self-narrowing of the particle size distribution. Adv. Mater. 15(21), 1844–1849 (2003)

    Google Scholar 

  • Hitosugi, T., Yamada, N., Nakao, S., Hirose, Y., Hasegawa, T.: Properties of TiO2-based transparent conducting oxides. Phys. Status Solidi A 207(7), 1529–1537 (2010)

    ADS  Google Scholar 

  • Ibraheem, F., Mahdy, M.A., Mahmoud, E.A., Ortega, J.E., Rogero, C., Mahdy, I.A., El-Sayed, A.: Tuning paramagnetic effect of Co-Doped CdS diluted magnetic semiconductor quantum dots, J. Alloys Comp. 834, 155196(1–7) (2020)

  • Iqbal, A., Mahmood, A., Khan, T.M., Ahmed, E.: Structural and optical properties of Cr doped ZnO crystalline thin films deposited by reactive electron beam evaporation technique. Prog. Nat. Sci. 23(1), 64–69 (2013)

    Google Scholar 

  • Jagadish, C., Pearton, S.: Zinc Oxide Bulk, Thin Films and Nanostructures: Processing, Properties, and Applications. Elsevier, Amsterdam (2006)

    Google Scholar 

  • Jiang, Q., Wu, Z.Y., Wang, Y.M., Cao, Y., Zhou, C., Zhu, J.H.: Fabrication of photoluminescent ZnO/SBA-15 through directly dispersing zinc nitrate into the as-prepared mesoporous silica occluded with template. J. Mat. Chem. 16(16), 1536 (2006). https://doi.org/10.1039/b516061h

    Article  Google Scholar 

  • Jiang, P., Xiang, W., Kuang, J., Liu, W., Cao, W.: Effect of cobalt doping on the electronic, optical and photocatalytic properties of TiO2. Solid State Sci. 46, 27–32 (2015)

    ADS  Google Scholar 

  • Kahmann, S., Shulga, A., Loi, M.A.: Quantum dot light-emitting transistors-powerful research tools and their future applications, Adv. Funct. Mater. 30, 1904174(1–15) (2020)

  • Kamiya, T., Kawasaki, M.: ZnO-Based Semiconductors as Building Blocks for Active Devices. MRS Bull. 33, 1061–1066 (2008)

    Google Scholar 

  • Kim, D.-H., Lu, N., Ghaffari, R., Rogers, J.A.: Inorganic semiconductor nanomaterials for flexible and stretchable bio-integrated electronics, NPG Asia Mater. 4, e15(1–9) (2012)

  • Kumar, S., Tiwari, N., Jha, S.N., Chatterjee, S., Bhattacharyy, D., Ghosh, A.K.: Structural and optical properties of sol–gel derived Cr-doped ZnO diluted magnetic semiconductor nanocrystals: an EXAFS study to relate the local structure. RSC Adv. 6, 107816–107828 (2016)

    ADS  Google Scholar 

  • Lee, S.Y., Shim, E.S., Kang, H.S., Pang, S.S., Kang, J.S.: Fabrication of ZnO thin film diode using laser annealing. Thin Solid Films 473, 31–34 (2005)

    ADS  Google Scholar 

  • Lee, J., Sorescu, D.C., Deng, X.: Tunable lattice constant and band gap of single and few-layer ZnO. J. Phys. Chem. Lett. 7(7), 1335–1340 (2016)

    Google Scholar 

  • Li, M.: Finite size and length effects on bandgap of CdSe nanorods. Phys. Chem. Chem. Phys. 19, 5513–5518 (2017)

    Google Scholar 

  • Li, X., Guoa, Z., He, T.: The doping mechanism of Cr into TiO2 and its influence on the photocatalytic performance. Phys. Chem. Chem. Phys. 15, 20037–20045 (2013)

    Google Scholar 

  • Lira-Cantu, M.: The future of semiconductor oxides in next-generation solar cells, Chapter 1, Metal Oxides Series, Elsevier, Amsterdam (2018)

  • Lu, Y.-J., Shi, Z.-F., Shan, C.-X., Shen, D.-Z.: ZnO-based deep-ultraviolet light-emitting devices, Chin. Phys. B 26(4), 047703(1–9) (2017)

  • Mattei, J.-G., Grammatikopoulos, P., Zhao, J., Singh, V., Vernieres, J., Steinhauer, S., Porkovich, A., Danielson, E., Nordlund, K., Djurabekova, F., Sowwan, M.: Gas-phase synthesis of trimetallic nanoparticles. Chem. Mater. 31(6), 2151–2163 (2019)

    Google Scholar 

  • Mohamed, M.B., Tonti, D., Al-Salman, A., Chemseddine, A., Chergu, M.: Synthesis of high quality zinc blende cdse nanocrystals. J. Phys. Chem. B 109(21), 10533–10537 (2005)

    Google Scholar 

  • Moreels, I., Justo, Y., De Geyter, B., Haustraete, K., Martins, J.C., Hens, Z.: Size-tunable, bright, and stable PbS quantum dots: a surface chemistry study. ACS Nano 5(3), 2004–2012 (2011)

    Google Scholar 

  • Moroz, P., Romero, L.R., Zamkov, M.: Colloidal semiconductor nanocrystals in energy transfer reactions. Chem. Commun. 55, 3033–3048 (2019)

    Google Scholar 

  • Mote, V.D., Huse, V.R., Dole, B.N.: Synthesis and characterization of Cr doped ZnO nanocrystals. World J. Condens. Matter. Phys. 2, 208–211 (2012)

    ADS  Google Scholar 

  • Mote, V.D., Purushotham, Y., Dole, B.N.: Williamson-Hall analysis in estimation of lattice strain in nanometer-sized ZnO particles, J. Theor. App. Phys. 6, 6(1–8) (2012)

  • Ning, C.-Z., Dou, L., Yang, P.: Bandgap engineering in semiconductor alloy nanomaterials with widely tunable compositions, Nat. Rev. Mater. 2, 17070(1–14) (2017)

  • Özgür, Ü., Alivov, Y.I., Liu, C., Teke, A., Reshchikov, M.A., Doğan, S., Avrutin, V., Cho, S.-J., Morko, H.: A comprehensive review of ZnO materials and devices. J. Appl. Phys. 98, 041–301 (2005)

    Google Scholar 

  • Palacios, P., Aguilera, I., Wahnón, P.: Electronic structure and optical properties in ZnO:M(Co, Cd) Effect of band-gap variation. Thin Solid Films 518, 4568–4571 (2010)

    ADS  Google Scholar 

  • Parveen, B., Hassan, M., Khalid, Z., Riaz, S., Naseem, S.: Room-temperature ferromagnetism in Ni-doped TiO2 diluted magnetic semiconductor thin films. J. Appl. Res. Technol. 15, 132–139 (2017)

    Google Scholar 

  • Pushpa, N., Kokila, M.K., Nagabhushana, B.M., Nagabhushana, H., Reddy, A.J.: Red luminescence from ZnO:Cr3+ nanophosphors under visible excitation. Bull. Mater. Sci. 38(5), 1359–1365 (2015)

    Google Scholar 

  • Saikia, L., Bhuyan, D., Saikia, M., Malakar, B., Dutta, D.K., Sengupta, P.: Photocatalytic performance of ZnO nanomaterials for self sensitized degradation of malachite green dye under solar light. Appl. Catal. A: Gen. 490, 42–49 (2015). https://doi.org/10.1016/j.apcata.2014.10.053

    Article  Google Scholar 

  • Salata, O. V.: Applications of nanoparticles in biology and medicine, J. Nanobiotechnol. 2, 3(1–6) (2004)

  • Sanderson, K.: Quantum dots go large. Nature 459, 760–761 (2009)

    Google Scholar 

  • Sato, K., Katayama-Yoshida, H.: Ferromagnetism in a transition metal atom doped ZnO. Physica E 10, 251–255 (2001)

    ADS  Google Scholar 

  • Schneider, L., Zaitsev, S.V., Jin, W., Kompch, A., Winterer, M., Acet, M., Bacher, G.: Fabrication and analysis of Cr-doped ZnO nanoparticles from the gas phase, Nanotechnology 20, 135604 (1–10) (2009)

  • Segets, D., Lucas, J.M., Taylor, R.N.K., Scheele, M., Zheng, H., Paul Alivisatos, A., Peukert, W.: Determination of the quantum dot band gap dependence on particle size from optical absorbance and transmission electron microscopy measurements, ACS Nano 6(10), 9021–9032 (2012)

  • Sharma, N., Ojha, H., Bharadwaj, A., Pathakc, D.P., Sharma, R.K.: Preparation and catalytic applications of nanomaterials: a review. RSC Adv. 5, 53381–53403 (2015)

    ADS  Google Scholar 

  • Siy, J.T., Brauser, E.M., Bartl, M.H.: Low-temperature synthesis of CdSe nanocrystal quantum dots. Chem. Commun. 47, 364–366 (2011)

    Google Scholar 

  • Smith, A.M., Nie, S.: Bright and compact alloyed quantum dots with broadly tunable near-infrared absorption and fluorescence spectra through mercury cation exchange. J. Am. Chem. Soc. 133(1), 24–26 (2011)

    Google Scholar 

  • Swihart, M.T.: Vapor-phase synthesis of nanoparticles. Curr. Opin. Coll. Interface Sci. 8(1), 127–133 (2003)

    Google Scholar 

  • Thomas, S., Sakho, E.M., Kalarikkal, N., Oluwafemi, S.O., Wu, J.: Nanomaterials for Solar Cell Applications, Chapter 5. Elsevier, Amsterdam (2019)

    Google Scholar 

  • Vijayalakshmi, K., Sivaraj, D.: Enhanced antibacterial activity of Cr doped ZnO nanorods synthesized using microwave processing. RSC Adv. 5, 68461–68469 (2015)

    ADS  Google Scholar 

  • Vos, M., King, S.W., French, B.L.: Measurement of the band gap by reflection electron energy loss spectroscopy. J. Electron Spectros. Relat. Phenomena 212, 74–80 (2016)

    Google Scholar 

  • Wei, M., Zhi, D., MacManus-Dris, J.L.: Self-catalysed growth of zinc oxide nanowires. Nanotechnology 16, 1364–1368 (2005)

    ADS  Google Scholar 

  • Zhao, H., Rosei, F.: Colloidal quantum dots for solar technologies. Chem 3, 229–258 (2017)

    Google Scholar 

Download references

Funding

The authors did not receive support from any organization for the submitted work.

Author information

Authors and Affiliations

Authors

Contributions

All listed authors contributed to the study conception and design and they all read and approved the final manuscript.

Corresponding author

Correspondence to Zakaria M. Abd El-Fattah.

Ethics declarations

Conflict of interests

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anad, N.S., El-Fattah, Z.M.A., Attallah, M. et al. Precise determination of optical band gap in Cr-doped semiconductor nanowires. Opt Quant Electron 54, 76 (2022). https://doi.org/10.1007/s11082-021-03462-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-021-03462-1

Keywords

Navigation