Skip to main content

Advertisement

Log in

Wavelength-selective metamaterial absorber based on 2D split rhombus grating for thermophotovoltic solar cell

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

Promising application prospects and excellent characteristics of metamaterials are currently under intensive research work all over the world. In this paper, novel wavelength selective metamaterial absorber based on 2D split rhombus grating is numerically proposed and analyzed. The suggested metamaterial absorber is made of molybdenum metals with dielectric spacer of Magnetic Florid (MgF2). The effects of the design parameters are studied to improve the absorption of the reported metamaterial absorber. Additionally, the inductor and capacitor (LC) model is investigated to understand the physics beyond the absorption of the studied design. The finite difference time domain method is used to obtain the modal analysis and absorption characteristics of the metamaterial structure. Perfect absorption is achieved through studied wavelength range from 300 to 20,000 nm with high photon-to-heat efficiency of 81.71% at 1000 K. The absorption enhancement is due to the coupling between the surface plasmon polariton, Fabry–Perot resonance, and magnetic polariton. It is also found that the achieved absorption is insensitive to the oblique incidence from θ = 0° to 60° for the transverse magnetic (TM) and transverse electric (TE) waves. Therefore, the suggested absorber has a good potential for using in solar energy harvesting and conversion systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abdelatif, G.Y., et al.: Ultrabroadband absorber based on a funnel-shaped anisotropic metamaterial. J. Opt. Soc. Am. B 36(10), 2889–2895 (2019)

    Article  ADS  Google Scholar 

  • Abdel-Latif, G.Y., et al.: Characteristics of thermophotovoltaic emitter based on 2D cylindrical gear grating. Opt. Quant. Electron. 53(3), 1–14 (2021)

    Article  Google Scholar 

  • ASTM: Reference solar spectral irradiance: air mass 1.5 spectra. http://rredc.nrel.gov/solar/spectra/am1.5/ (2011)

  • Aydin, K., et al.: Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers. Nat. Commun. 2(1), 1–7 (2011)

    Article  MathSciNet  Google Scholar 

  • Baxter, J., et al.: Nanoscale design to enable the revolution in renewable energy. Energy Environ. Sci. 2(6), 559–588 (2009)

    Article  Google Scholar 

  • Bhattarai, K., et al.: Metamaterial perfect absorber analyzed by a meta-cavity model consisting of multilayer metasurfaces. Scientific reports 7.1, 1–9 (2017)

  • Bossard, J.A., Werner, D.H.: Metamaterials with custom emissivity polarization in the near-infrared. Opt. Express 21(3), 3872–3884 (2013)

    Article  ADS  Google Scholar 

  • Cai, H., et al.: Genetic algorithm optimization for highly efficiency solar thermal absorber based on optical metamaterials. J. Quant. Spectrosc. Radiat. Transf. 271, 107712 (2021)

    Article  Google Scholar 

  • Cao, S., et al.: Two-dimensional subwavelength meta-nanopillar array for efficient visible light absorption. Appl. Phys. Lett. 102(16), 161109 (2013)

    Article  ADS  Google Scholar 

  • Cao, T., et al.: Broadband polarization-independent perfect absorber using a phase-change metamaterial at visible frequencies. Sci. Rep. 4, 1–8 (2014)

    Google Scholar 

  • Chen, H.-T., et al.: Active terahertz metamaterial devices. Nature 444(7119), 597–600 (2006)

    Article  ADS  Google Scholar 

  • Chen, L., et al.: Near-field imaging of the multi-resonant mode induced broadband tunable metamaterial absorber. RSC Adv. 10(9), 5146–5151 (2020)

    Article  ADS  Google Scholar 

  • Cui, Y., et al.: Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab. Nano Lett. 12(3), 1443–1447 (2012)

    Article  ADS  Google Scholar 

  • Dolling, G., et al.: Negative-index metamaterial at 780 nm wavelength. Opt. Lett. 32(1), 53–55 (2007)

    Article  ADS  Google Scholar 

  • Fowles, G.R.: Introduction to Modern Optics. Courier Corporation, New York (1989)

    Google Scholar 

  • Ghobadi, A., et al.: Tuning the metal filling fraction in metal-insulator-metal ultra-broadband perfect absorbers to maximize the absorption bandwidth. Photonics Res. 6(3), 168–176 (2018)

    Article  MathSciNet  Google Scholar 

  • Glybovski, S.B., et al.: Metasurfaces: from microwaves to visible. Phys. Rep. 634, 1–72 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  • Green, M.A.: Solar Cells: Operating Principles, Technology, and System Applications. Prentice-Hall, Englewood Cliffs (1982)

    Google Scholar 

  • Guler, U., et al.: Refractory plasmonics. Science 344(6181), 263–264 (2014)

    Article  ADS  Google Scholar 

  • Hao, J., et al.: High performance optical absorber based on a plasmonic metamaterial. Appl. Phys. Lett. 96(25), 251104 (2010)

    Article  ADS  Google Scholar 

  • Haque, A., et al.: Damage analysis of a perfect broadband absorber by a femtosecond laser. Sci. Rep. 9(1), 1–8 (2019)

    Article  MathSciNet  Google Scholar 

  • Hedayati, M.K., et al.: Design of a perfect black absorber at visible frequencies using plasmonic metamaterials. Adv. Mater. 23(45), 5410–5414 (2011)

    Article  Google Scholar 

  • Holloway, C.L., et al.: An overview of the theory and applications of metasurfaces: the two-dimensional equivalents of metamaterials. IEEE Antennas Propag. Mag. 54(2), 10–35 (2012)

    Article  ADS  Google Scholar 

  • Incropera, F.P., et al.: Fundamentals of Heat and Mass Transfer. Wiley, Hoboken (2007)

    Google Scholar 

  • Khodasevych, I.E., et al.: Micro-and nanostructured surfaces for selective solar absorption. Adv. Opt. Mater. 3(7), 852–881 (2015)

    Article  Google Scholar 

  • Landy, N.I., et al.: Perfect metamaterial absorber. Phys. Rev. Lett. 100(20), 207402 (2008)

    Article  ADS  Google Scholar 

  • Lee, B.J., et al.: Coherent thermal emission by excitation of magnetic polaritons between periodic strips and a metallic film. Opt. Express 16(15), 11328–11336 (2008)

    Article  ADS  Google Scholar 

  • Lei, L., et al.: Ultra-broadband absorber from visible to near-infrared using plasmonic metamaterial. Opt. Express 26(5), 5686–5693 (2018)

    Article  ADS  Google Scholar 

  • Li, L., et al.: A wide-angle polarization-insensitive ultra-thin metamaterial absorber with three resonant modes. J. Appl. Phys. 110(6), 063702 (2011)

    Article  ADS  Google Scholar 

  • Liu, X., Padilla, W.J.: Thermochromic infrared metamaterials. Adv. Mater. 28(5), 871–875 (2016)

    Article  Google Scholar 

  • Liu, X., et al.: Infrared spatial and frequency selective metamaterial with near-unity absorbance. Phys. Rev. Lett. 104(20), 207403 (2010)

    Article  ADS  Google Scholar 

  • Liu, X., et al.: Taming the blackbody with infrared metamaterials as selective thermal emitters. Phys. Rev. Lett. 107(4), 045901 (2011)

    Article  ADS  Google Scholar 

  • Lu, L., et al.: Cooperative plasmonic effect of Ag and Au nanoparticles on enhancing performance of polymer solar cells. Nano Lett. 13(1), 59–64 (2012)

    Article  ADS  Google Scholar 

  • Lumerical Solution, I., Inc. https://www.lumerical.com

  • Maier, S.A.: Plasmonics: Fundamentals and Applications. Springer, Berlin (2007)

    Book  Google Scholar 

  • Ni, Q., et al.: Plasmonic light trapping for enhanced light absorption in film-coupled ultrathin metamaterial thermophotovoltaic cells. Front. Energy 12(1), 185–194 (2018)

    Article  Google Scholar 

  • Park, J.W., et al.: Multi-band metamaterial absorber based on the arrangement of donut-type resonators. Opt. Express 21(8), 9691–9702 (2013)

    Article  ADS  Google Scholar 

  • Pryce, I.M., et al.: Highly strained compliant optical metamaterials with large frequency tunability. Nano Lett. 10(10), 4222–4227 (2010)

    Article  ADS  Google Scholar 

  • Solymar, L., Shamonina, E.: Waves in Metamaterials. Oxford University Press, Oxford (2009)

    Google Scholar 

  • Spanggaard, H., Krebs, F.C.: A brief history of the development of organic and polymeric photovoltaics. Sol. Energy Mater. Sol. Cells 83(2–3), 125–146 (2004)

    Article  Google Scholar 

  • Sun, J., et al.: An extremely broad band metamaterial absorber based on destructive interference. Opt. Express 19(22), 21155–21162 (2011)

    Article  ADS  Google Scholar 

  • Walia, S., et al.: Flexible metasurfaces and metamaterials: a review of materials and fabrication processes at micro-and nano-scales. Appl. Phys. Rev. 2(1), 011303 (2015)

    Article  ADS  Google Scholar 

  • Wang, H., Wang, L.: Perfect selective metamaterial solar absorbers. Opt. Express 21(106), A1078–A1093 (2013)

    Article  ADS  Google Scholar 

  • Wang, L., Zhang, Z.M.: Effect of magnetic polaritons on the radiative properties of double-layer nanoslit arrays. JOSA B 27(12), 2595–2604 (2010)

    Article  ADS  Google Scholar 

  • Wang, L., Zhang, Z.J.: Wavelength-selective and diffuse emitter enhanced by magnetic polaritons for thermophotovoltaics. Appl. Phys. Lett. 100(6), 063902 (2012)

    Article  ADS  Google Scholar 

  • Wang, B., et al.: Wide-angle and polarization-independent chiral metamaterial absorber. Phys. Rev. 80(3), 033108 (2009)

    Article  Google Scholar 

  • Wang, H., et al.: Tailoring thermal radiative properties with film-coupled concave grating metamaterials. J. Quant. Spectrosc. Radiat. Transf. 158, 127–135 (2015)

    Article  ADS  Google Scholar 

  • Watts, C.M., et al.: Metamaterial electromagnetic wave absorbers. Adv. Mater. 24(23), OP98–OP120 (2012)

    Google Scholar 

  • Wilt, D., et al. Thermophotovoltaics for space power applications. In: AIP Conference Proceedings. American Institute of Physics (2007)

  • Wu, C., et al.: Large-area wide-angle spectrally selective plasmonic absorber. Phys. Rev. B 84(7), 075102 (2011)

    Article  ADS  Google Scholar 

  • Xu, H., et al.: Dual-band metamaterial absorbers in the visible and near-infrared regions. J. Phys. Chem. C 123(15), 10028–10033 (2019)

    Article  Google Scholar 

  • Yen, T.-J., et al.: Terahertz magnetic response from artificial materials. Science 303(5663), 1494–1496 (2004)

    Article  ADS  Google Scholar 

  • Yokoyama, T., et al.: Spectrally selective mid-infrared thermal emission from molybdenum plasmonic metamaterial operated up to 1000° C. Adv. Opt. Mater. 4(12), 1987–1992 (2016)

    Article  Google Scholar 

  • Zhang, Z.M.: Nano/Microscale Heat Transfer. McGraw-Hill, New York (2007)

    MATH  Google Scholar 

  • Zhao, B., et al.: Thermophotovoltaic emitters based on a two-dimensional grating/thin-film nanostructure. J. Heat Mass Transf. 67, 637–645 (2013)

    Article  Google Scholar 

  • Zheludev, N.I., Kivshar, Y.S.: From metamaterials to metadevices. Nat. Mater. 11(11), 917–924 (2012)

    Article  ADS  Google Scholar 

  • Zhou, J., et al.: Unifying approach to left-handed material design. Opt. Lett. 31(24), 3620–3622 (2006)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work is supported by the Solar Energy project sponsored by the Academy of Scientific Research and Technology (ASRT).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mohamed Farhat O. Hameed or S. S. A. Obayya.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interest related to this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hamdy, H., Abdel-Latif, G.Y., El-Agamy, M. et al. Wavelength-selective metamaterial absorber based on 2D split rhombus grating for thermophotovoltic solar cell. Opt Quant Electron 54, 117 (2022). https://doi.org/10.1007/s11082-021-03459-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-021-03459-w

Keywords

Navigation