Skip to main content
Log in

GaN-based bipolar cascade lasers with 25 nm wide quantum wells

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

In good agreement with measurements, self-consistent numerical simulations are utilized to analyze internal device physics, performance limitations, and optimization options for a unique laser design with multiple active regions separated by tunnel junctions, featuring surprisingly wide InGaN quantum wells. Contrary to common assumptions, these quantum wells are revealed to allow for perfect screening of the strong built-in polarization field, while optical gain is provided by higher quantum levels. However, internal absorption, low p-cladding conductivity, and self-heating are shown to strongly limit the laser performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Crosslight Software Inc., Vancouver, Canada (2019)

  • Kanskar, M., et al.: High power and high efficiency 1.8-kW pulsed diode laser bar. J. Photonics Energy 7, 016003 (2017)

    Article  ADS  Google Scholar 

  • Kioupakis, E., et al.: Determination of Internal Loss in Nitride Lasers from First Principles. Appl. Phys. Express 3, 082101 (2010)

    Article  ADS  Google Scholar 

  • Muziol, G., et al.: Enhancement of optical confinement factor by InGaN waveguide in blue laser diodes grown by plasma-assisted molecular beam epitaxy. Appl. Phys. Express 8, 032103 (2015)

    Article  ADS  Google Scholar 

  • Muziol, G., et al.: Beyond quantum efficiency limitations originating from the piezoelectric polarization in light-emitting devices. ACS Photonics 6, 1963–1971 (2019)

    Article  Google Scholar 

  • Nozaki, S., et al.: High-power and high-temperature operation of an InGaN laser over 3W at 85 °C using a novel double-heat-flow packaging technology. Jpn. J. Appl. Phys. 55, 04EH05 (2016)

    Article  Google Scholar 

  • Ozden, I., et al.: A dual-wavelength indium gallium nitride quantum well light emitting diode. Appl. Phys. Lett. 79, 2532–2534 (2001)

    Article  ADS  Google Scholar 

  • Piprek, J.: Semiconductor Optoelectronic Devices: Introduction to Physics and Simulation. Academic Press, San Diego (2003)

    Google Scholar 

  • Piprek, J.: Blue light emitting diode exceeding 100% quantum efficiency. Phys. Status Solidi Rapid Res. Lett. 8, 424–426 (2014)

    Article  ADS  Google Scholar 

  • Piprek, J. et al.: Nitride Semiconductor Devices: Principles and Simulation, Chapter 19, pp. 423–445, Wiley-VCH, Weinheim (2007)

  • Piprek, J.: What limits the efficiency of high-power InGaN/GaN lasers? IEEE J. Quant. Electron. 53, 2000104 (2017)

    Article  Google Scholar 

  • Piprek, J.: Energy efficiency analysis of GaN-based blue light emitters. ECS J. Solid State Sci. Technol. 9, 015008 (2020a)

    Article  ADS  Google Scholar 

  • Piprek, J.: Efficiency models for GaN-based light emitting diodes: status and challenges. MDPI Mater. 13, 5174 (2020b)

    ADS  Google Scholar 

  • Prineas, J.P., et al.: Cascaded active regions in 2.4-micron GaInAsSb light-emitting diodes for improved current efficiency. Appl. Phys. Lett. 89, 211108 (2006)

    Article  ADS  Google Scholar 

  • Schwarz, B.: Mapping the world in 3D. Nat. Photonics 4, 429–430 (2010)

    Article  ADS  Google Scholar 

  • Siekacz, M., et al.: Stack of two III-nitride laser diodes interconnected by a tunnel junction. Opt. Express 27, 5784–5791 (2019)

    Article  ADS  Google Scholar 

  • van der Ziel, J.P., Tang, W.T.: Integrated multilayer GaAs lasers separated by tunnel junctions. Appl. Phys Lett. 41, 499–501 (1982)

    Article  ADS  Google Scholar 

  • Zak, M., et al.: Tunnel junctions with a doped (In, Ga)N quantum well for vertical integration of III-nitride optoelectronic devices. Phys. Rev. Appl. 15, 024046 (2021)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The contribution of G.M., M.S., and C.S was supported by funding from Narodowe Centrum Nauki (2019/35/D/ST3/03008), Narodowe Centrum Badan i Rozwoju (LIDER/35/0127/L9/17/NCBR/2018), and Fundacja na rzecz Nauki Polskiej (TEAMTECHPOIR.04.04.00-00-210C/16-00).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joachim Piprek.

Ethics declarations

Conflict of interest

The authors have no conflict of interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Numerical Simulation of Optoelectronic Devices.

Guest edited by Slawek Sujecki, Asghar Asgari, Donati Silvano, Karin Hinzer, Weida Hu, Piotr Martyniuk, Alex Walker and Pengyan Wen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Piprek, J., Muziol, G., Siekacz, M. et al. GaN-based bipolar cascade lasers with 25 nm wide quantum wells. Opt Quant Electron 54, 62 (2022). https://doi.org/10.1007/s11082-021-03455-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-021-03455-0

Keywords

Navigation