Skip to main content

Advertisement

Log in

The efficiency of silicon thin film solar cell: impact of temperature with different surface shapes

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

In this work, the temperature effects on the PV’s electrical and optical parameters of different surface gratings are studied. A 3D simulation is introduced for studying the PV’s electrical parameters such as short circuit current, open-circuit voltage, and efficiency at different levels of temperature with and without surface’s gratings. We observed that the efficiency is increased for PV of surface grating by about 4.87% compared to the free grating surface’s PV. The efficiency of the PV efficiency is degraded when the temperature is increased above 300 K. The solar cell efficiency of gratings free is aggressively degraded compared to the solar cell that includes gratings by about 4.89% at 360 K. The electrical parameters such as the open-circuit voltage and short circuit current are enhanced compared to the PV of surface grating free. Also, we observed that the triangle grating geometry of dimensions about 10 × 10 nm produced a higher efficiency compared to the other PV of other grating geometries of the same dimensions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

Data related to this article are available from the corresponding author upon reasonable request.

References

  • Abdelhamid, H., Edris, A., Helmy, A., Ismail, Y.: Fast and accurate PV model for SPICE simulation. J. Comput. Elect. 2(18), 260–270 (2019)

    Article  Google Scholar 

  • Battaglia, C., et al.: Light trapping in solar cells: can periodic beat random? ACS Nano 6(3), 2790–2797 (2012)

    Article  Google Scholar 

  • Contreras, M.A., Nakada, T., Pudov, A.O., Sites, R.: ZnO/ZnS(O,OH)/Cu(In,Ga)Se2/ Mo solar cell with 18.6% efficiency. In: Proceedings of the Third World Conference of Photovoltaic Energy Conversion, pp. 570–573 (2003)

  • Elewa, S., Yousif, B., Abo-Elsoud, M.E.A.: Efficiency enhancement of intermediate band solar cell using front surface pyramid grating. Opt. Quant. Electron 53, 360 (2021). https://doi.org/10.1007/s11082-021-03007-6

    Article  Google Scholar 

  • ElKhamisy, K., Abdelhamid, H., Elagooz, S., et al.: The effect of different surface plasmon polariton shapes on thin-film solar cell efficiency. J. Comput. Elect. (2021). https://doi.org/10.1007/s10825-021-01729-0

    Article  Google Scholar 

  • ElKhamisy, K.M., El-Rabaie, S., Elagooz, S.S., Elhamid, H.A.: The effect of different surface grating shapes on thin film solar cell efficiency. International Conference on Innovative Trends in Computer Engineering (ITCE), Aswan, Egypt (2019).

  • Evoy, A.M.C., Markvart, T., Castaner, L.: Practical Handbook of Photovoltaics Fundamentals and Applications, 2nd edn. Elsevier, Hoboken (2012)

    Google Scholar 

  • Fan, J.C.C.: Theoretical temperature dependence of solar cell parameters. Solar Cells 17, 309–315 (1986)

    Article  ADS  Google Scholar 

  • Fonash, S., (Ed): Homojunction solar cells. In: Solar Cell Device Physics, pp. 155–166, Elsevier, Burlington, Massachusetts (2012).

  • Friedman, D.J.: Modeling of tandem cell temperature coefficients. In: Proceedings of the 25th IEEE Photovoltaic Specialists Conference, Washington DC, IEEE, New York, pp. 89–92 (1996)

  • Ghahremani, A., Fathy, A.E.: A three-dimensional multiphysics modeling of thin-film amorphous silicon solar cells. Energy Sci. Eng. 3(6), 520–534 (2015). https://doi.org/10.1002/ese3.100

    Article  Google Scholar 

  • Hall, R.N.: Electron-hole recombination in silicon. Phys. Rev. 87, 387 (1952)

    Article  ADS  Google Scholar 

  • Jeng, M.J., Lee, Y.L., Chang, L.B.: Temperature dependences of lnxGa1xN multiple quantum well solar cells. J. Phys. D Appl. Phys. 42, 105101 (2009)

    Article  ADS  Google Scholar 

  • Khalifa, A.E., Elhamid, H.A., Swillam, M.A.: Optimal design of intermediate reflector layer in micromorph silicon thin-film solar cells. J. Nanophoton. 4(10), 046006–1 (2016)

    Google Scholar 

  • Landis, G., Rafaelle, R., Merritt, D.: High temperature solar cell development. In: Proceedings of the 19th European Photovoltaic Science and Engineering Conference, Paris, France, June 7–11 (2004)

  • Madelung, O.: Semiconductors: data handbook. Springer, Berlin Heidelberg (2004)

    Book  Google Scholar 

  • Pässler, R.: Parameter sets due to fittings of the temperature dependencies of fundamental bandgaps in semiconductors. Phys. Stat. Sol. (b) 216(2), 975–1007 (1999)

    Article  ADS  Google Scholar 

  • Salem, M., Zekry, A., Shaker, A.: Investigation of base high doping impact on the npn solar cell microstructure performance using physically based analytical model. IEEE ACCESS 9, 16958–16966 (2021)

    Article  Google Scholar 

  • Singh, J.: Electronic and Optoelectronic Properties of Semiconductor Structures, 1st edn. Cambridge University Press, Cambridge; New York (2007)

    Google Scholar 

  • Singh, P., Singh, S.N., Lal, M., Husain, M.: Temperature dependence of I-V characteristics and performance parameters of silicon solar cell. Solar Energy Mater. Solar Cells 92, 1611–1616 (2008)

    Article  Google Scholar 

  • Staebler, D., Wronski, C.R.: Optically induced conductivity changes in dischargeproduced hydrogenated amorphous silicon. J. Appl. Phys. 51(6), 3262–3268 (1980)

    Article  ADS  Google Scholar 

  • Sze, S.M.: Physics of Semiconductor Devices, p. 264. Wiley, New York (1981)

    Google Scholar 

  • Wang, K.X., et al.: Absorption enhancement in ultrathin crystalline silicon solar cells with antireflection and light-trapping nanocone gratings. Nano Lett. 12(3), 1616–1619 (2012)

    Article  ADS  Google Scholar 

  • Wang, J., Xu, Z., Bian, F., Wang, H., Wang, J.: Design and analysis of light trapping in thin-film gallium arsenide solar cells using an efficient hybrid nanostructure. J. Nanophoton. 11(4), 046017 (2017). https://doi.org/10.1117/1.JNP.11.046017

    Article  ADS  Google Scholar 

  • Wysocki, J.J., Rappaport, P.: Effect of temperature on photovoltaic solar energy conversion. J. Appl. Phys. 31, 571–578 (1960)

    Article  ADS  Google Scholar 

  • Yousif, B., Abo-Elsoud, M.E.A., Marouf, H.: Triangle grating for enhancement the efficiency in thin film photovoltaic solar cells. Opt. Quant. Electron. 51, 276 (2019)

    Article  Google Scholar 

  • Zeng, L., et al.: Demonstration of enhanced absorption in thin-film Si solar cells with textured photonic crystal back reflector. Appl. Phys. Lett. 93(22), 221105 (2008)

    Article  ADS  Google Scholar 

Download references

Funding

No funding was received.

Author information

Authors and Affiliations

Authors

Contributions

All the authors have contributed equally.

Corresponding author

Correspondence to Khalil ElKhamisy.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Consent to participate

All the authors agreed to involve in this research work.

Consent for publication

All the authors have given permission to publish the results.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

ElKhamisy, K., Abdelhamid, H., Elagooz, S. et al. The efficiency of silicon thin film solar cell: impact of temperature with different surface shapes. Opt Quant Electron 54, 49 (2022). https://doi.org/10.1007/s11082-021-03433-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-021-03433-6

Keywords

Navigation