Skip to main content
Log in

Multi-mode circular dichroism in n-fold rotational symmetric metamaterials

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

In this article, the effects of the rotation angle between upper and lower n-fold rotational symmetric nano-structures are studied. Various modes of circular dichroism (single wavelength band, dual-wavelength bands, and more than two wavelength bands) in the wavelength band from 3.3 to 5 μm are realized. Circular dichroism up to 0.798 are observed. Meanwhile, sensitivity of circular dichroism to the rotation angle and reconfigure strategy for opposite responses has been discussed. Based on Born-Kuhn model, physical mechanism of mode’s switching is explained with charge distributions. The multi-mode chiroptical responses in mid-infrared band and the variety of design strategies have potential applications in the field of tunable multi-band chiral devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Arteaga, O., Sancho-Parramon, J., Nichols, S., Maoz, B.M., Canillas, A., Bosch, S., Markovich, G., Kahr, B.: Relation between 2D/3D chirality and the appearance of chiroptical effects in real nanostructures. Opt. Express 24(3), 2242–2252 (2016)

    Article  ADS  Google Scholar 

  • Asgari, S., Granpayeh, N., Fabritius, T.: Controllable terahertz cross-shaped three-dimensional graphene intrinsically chiral metastructure and its biosensing application. Opt. Commun. 474, 126080 (2020)

  • Berova, N., Nakanishi, K., Woody, R.W.: Circular dichroism: principles and applications. Wiley (2000)

  • Bu, T., Chen, K., Liu, H., Liu, J., Hong, Z., Zhuang, S.: Location-dependent metamaterials in terahertz range for reconfiguration purposes. Photonics Res. 4(3), 122–125 (2016)

    Article  Google Scholar 

  • Cao, T., Zhang, L., Simpson, R.E., Wei, C., Cryan, M.J.: Strongly tunable circular dichroism in gammadion chiral phase-change metamaterials. Opt. Express 21(23), 27841–27851 (2013)

    Article  ADS  Google Scholar 

  • Cao, T., Wei, C., Zhang, L.: Modeling of multi-band circular dichroism using metal/dielectric/metal achiral metamaterials. Opt. Mater. Express 4(8), 1526–1534 (2014)

    Article  ADS  Google Scholar 

  • Chen, K., Zhang, X., Li, S., Lu, Z., Chang, M., Wei, Y., Fu, Y.J., Feng, Q., Li, L., Zhuang, S.: Switchable 3D printed microwave metamaterial absorbers by mechanical rotation control. J. Phys. D: Appl. Phys. 53(30), 305105 (2020)

  • Chen, Y., Chen, K., Zhang, D., Li, S., Xu, Y., Wang, X., Zhuang, S.: Ultrabroadband microwave absorber based on 3D water microchannels. Photonics Res. 9(7), 1391–1396 (2021)

    Article  Google Scholar 

  • Cheng, Y.Z., Yang, Y.L., Zhou, Y.J., Zhang, Z., Mao, X.S., Gong, R.Z.: Complementary Y-shaped chiral metamaterial with giant optical activity and circular dichroism simultaneously for terahertz waves. J. Mod. Opt. 63(17), 1675–1680 (2016)

    Article  ADS  Google Scholar 

  • Hannam, K., Powell, D.A., Shadrivov, I.V., Kivshar, Y.S.: Broadband chiral metamaterials with large optical activity. Phys. Rev. B 89(12), 125105 (2014)

  • Kaya, S.: Circular dichroism from windmill-shaped planar structures operating in mid-infrared regime. Opt. Mater. Express 4(11), 2332–2339 (2014)

    Article  ADS  Google Scholar 

  • Kaya, S., Turkmen, M., Topaktas, O.: Design of planar chiral metamaterials for near-infrared regime. Appl. Phys. A 123(1), 109 (2017)

  • Landy, N.I., Sajuyigbe, S., Mock, J.J., Smith, D.R., Padilla, W.J.: Perfect metamaterial absorber. Phys. Rev. Lett. 100(20), 207402 (2008)

  • Li, Q., Zhang, Z.: Bonding and anti-bonding modes of plasmon coupling effects in TiO2-Ag core-shell dimers. Sci. Rep. 6, 19433 (2016)

  • Li, Z., Mutlu, M., Ozbay, E.: Chiral metamaterials: from optical activity and negative refractive index to asymmetric transmission. J. Opt. 15(2), 023001 (2013)

  • Li, M., Guo, L., Dong, J., Yang, H.: An ultra-thin chiral metamaterial absorber with high selectivity for LCP and RCP waves. J. Phys. D: Appl. Phys. 47(18), 185102 (2014)

  • Li, S., Chen, K., Zhang, D., Chen, Y., Xu, Y., Liu, J., Wang, X., Zhuang, S.: Reconfigurable metamaterial for chirality switching and selective intensity modulation. Opt. Express 28(23), 34804–34811 (2020)

    Article  ADS  Google Scholar 

  • Liang, S., Zhu, Z., Jiang, L.: Twist-angle dependent circular dichroism and related mechanisms in closely stacked Archimedean planar metamaterials. OSA Continuum 4(4), 1326–1338 (2021)

    Article  Google Scholar 

  • Liu, N., Guo, H., Fu, L., Kaiser, S., Schweizer, H., Giessen, H.: Three-dimensional photonic metamaterials at optical frequencies. Nat. Mater. 7(1), 31–37 (2008)

    Article  ADS  Google Scholar 

  • Liu, N., Mesch, M., Weiss, T., Hentschel, M., Giessen, H.: Infrared perfect absorber and its application as plasmonic sensor. Nano Lett. 10(7), 2342–2348 (2010)

    Article  ADS  Google Scholar 

  • Liu, H., Shang, Z., Wu, X., Dou, C., Zhang, J.: Tunable circular dichroism of bilayer b-type chiral nanostructures. Opt. Commun. 448, 76–81 (2019)

    Article  ADS  Google Scholar 

  • Ma, W., Wen, Y., Yu, X.: Broadband metamaterial absorber at mid-infrared using multiplexed cross resonators. Opt. Express 21(25), 30724–30730 (2013)

    Article  ADS  Google Scholar 

  • Ma, X., Xiao, Z., Liu, D., Wang, L., Xu, K., Tang, J., Wang, Z.: Dispersionless optical activity based on novel windmill-shaped chiral metamaterial. Mod. Phys. Lett. B 30(04), 1650033 (2016)

  • Ma, X., Pu, M., Li, X., Guo, Y., Gao, P., Luo, X.: Meta-chirality: fundamentals construction and applications. Nanomaterials (basel) 7(5), 116 (2017)

  • Ouyang, L., Wang, W., Rosenmann, D., Czaplewski, D.A., Gao, J., Yang, X.: Near-infrared chiral plasmonic metasurface absorbers. Opt. Express 26(24), 31484–31489 (2018)

    Article  ADS  Google Scholar 

  • Palik, E.D.: Handbook of optical constants of solids. Academic press (1998)

  • Prodan, E., Nordlander, P.: Plasmon hybridization in spherical nanoparticles. J. Chem. Phys. 120(11), 5444–5454 (2004)

    Article  ADS  Google Scholar 

  • Ranjbar, B., Gill, P.: Circular dichroism techniques: biomolecular and nanostructural analyses- a review. Chem. Biol. Drug Des. 74(2), 101–120 (2009)

    Article  Google Scholar 

  • Saadeldin, A.S., Hameed, M.F.O., Elkaramany, E.M.A., Obayya, S.S.A.: Highly sensitive terahertz metamaterial sensor. IEEE Sens. J. 19(18), 7993–7999 (2019)

    Article  ADS  Google Scholar 

  • Stanley, R.: Plasmonics in the mid-infrared. Nat. Photonics 6(7), 409–411 (2012)

    Article  ADS  Google Scholar 

  • Valentine, J., Zhang, S., Zentgraf, T., Ulin-Avila, E., Genov, D.A., Bartal, G., Zhang, X.: Three-dimensional optical metamaterial with a negative refractive index. Nature 455(7211), 376–379 (2008)

    Article  ADS  Google Scholar 

  • Wang, L., Huang, X., Li, M., Dong, J.: Chirality selective metamaterial absorber with dual bands. Opt. Express 27(18), 25983–25993 (2019)

    Article  ADS  Google Scholar 

  • Wu, L., Yang, Z., Cheng, Y., Lu, Z., Zhang, P., Zhao, M., Gong, R., Yuan, X., Zheng, Y., Duan, J.: Electromagnetic manifestation of chirality in layer-by-layer chiral metamaterials. Opt. Express 21(5), 5239–5246 (2013)

    Article  ADS  Google Scholar 

  • Xu, J., Fan, Y., Yang, R., Fu, Q., Zhang, F.: Realization of switchable EIT metamaterial by exploiting fluidity of liquid metal. Opt Express 27(3), 2837–2843 (2019)

    Article  ADS  Google Scholar 

  • Yan, B., Zhong, K., Ma, H., Li, Y., Sui, C., Wang, J., Shi, Y.: Planar chiral metamaterial design utilizing metal-silicides for giant circular dichroism and polarization rotation in the infrared region. Opt. Commun. 383, 57–63 (2017)

    Article  ADS  Google Scholar 

  • Yin, X., Schaferling, M., Metzger, B., Giessen, H.: Interpreting chiral nanophotonic spectra: the plasmonic Born-Kuhn model. Nano. Lett. 13(12), 6238–6243 (2013)

    Article  ADS  Google Scholar 

  • Yin, X., Schäferling, M., Michel, A.-K.U., Tittl, A., Wuttig, M., Taubner, T., Giessen, H.: Active chiral plasmonics. Nano Lett. 15(7), 4255–4260 (2015)

    Article  ADS  Google Scholar 

  • Yoo, S., Park, Q.H.: Metamaterials and chiral sensing: a review of fundamentals and applications. Nanophotonics 8(2), 249–261 (2019)

    Article  Google Scholar 

  • Zhang, M., Lu, Q., Zheng, H.: Tunable circular dichroism created by surface plasmons in bilayer twisted tetramer nanostructure arrays. J. Opt. Soc. Am. B 35(4), 689–693 (2018)

    Article  ADS  Google Scholar 

  • Zhang, X., Zhang, D., Fu, Y., Li, S., Wei, Y., Chen, K., Wang, X., Zhuang, S.: 3-D printed swastika-shaped ultrabroadband water-based microwave absorber. IEEE Antennas Wirel. Propag. Lett. 19(5), 821–825 (2020)

    Article  ADS  Google Scholar 

  • Zhou, J., Chowdhury, D.R., Zhao, R., Azad, A.K., Chen, H.-T., Soukoulis, C.M., Taylor, A.J., O’Hara, J.F.: Terahertz chiral metamaterials with giant and dynamically tunable optical activity. Phys. Rev. B (2012). https://doi.org/10.1103/PhysRevB.86.035448

  • Zhou, L., Wang, Y., Zhou, J., Ding, J., Su, Z., Li, M., Lu, M., Shi, H., Sang, T.: Tunable circular dichroism of stretchable chiral metamaterial. Appl. Phys. Express 13(4), 042008 (2020)

Download references

Acknowledgements

This work was supported in part by the National Natural Science Foundation of China under Grants 61205095, in part by the Shanghai Young College Teacher Develop funding schemes under Grant slg11006. We also thank Dr. Y.G. Du and Ms. T. Bu for their help.

Funding

This research was funded by the National Natural Science Foundation of China, Grant Number 61205095 and Shanghai Young College Teacher Develop funding schemes, Grant Number slg11006.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, S.L.; methodology, S.L.; formal analysis, S.L. Y.X., Y.C.; investigation, S.L.; data curation, S.L.; writing—original draft preparation, S.L.; writing—review and editing, S.L., K.C., Y.X., Y.C.; visualization, S.L., Y.X., Y.C.; supervision, K.C.; All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Kejian Chen.

Ethics declarations

Conflict of interest

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, S., Chen, K., Xu, Y. et al. Multi-mode circular dichroism in n-fold rotational symmetric metamaterials. Opt Quant Electron 54, 50 (2022). https://doi.org/10.1007/s11082-021-03432-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-021-03432-7

Keywords

Navigation