Skip to main content
Log in

Extraction of new bright and Kink soliton solutions related to Ginzburg Landau equation incorporating fractal effects

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

The current manuscript investigates the fractal model of the complex Ginzburg Landau equation which has many applications in fiber optics. The two algorithms namely, the semi-inverse approach and Painlevé method is adopted to uncover the soliton solutions of the governing system. The proposed techniques are more straightforward, succinct, accurate, and simple to calculate. As a result, bright and kink solitons are retrieved by the implementation of above-mentioned strategies. The constraint conditions that assure the presence of these solitons appear from the solutions of the model. Due to fractal dimension value irregularity and spikes appear in the solutions which are depicted by graphical illustrations. For several values of fractal parameter 2D, 3D and density plots are presented for the outcomes of semi-inverse strategy and 3D graphs are depicted for Painlevé approach. These techniques proven to be very useful and efficient gadgets for solving nonlinear fractal differential equations that emerge in mathematical physics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability statement

All data generated or analyzed during this study are included in this published article.

Code availability

Mathematica or Maple files are available on request.

References

  • Achab, A.E., Rezazadeh, H., Baleanu, D., Leta, T.D., Javeed, S., Alimgeer, K.S.: Ginzburg Landau equations innovative solution. Phys. Scr. 96, 035204 (2021)

    Article  ADS  Google Scholar 

  • Afanasjev, V.V.: Interpretation of the effect of reduction of soliton interaction by bandwidth-limited amplification. Opt. Lett. 18, 790–792 (1993)

    Article  ADS  Google Scholar 

  • Akbulut, A., Kaplan, M., Tascan, F.: The investigation of exact solutions of nonlinear partial differential equations by using \(\text{ exp }(-\phi ( ))\) method. Optik 132, 382–387 (2017)

    Article  ADS  Google Scholar 

  • Aranson, I.S., Kramer, L.: The world of the complex Ginzburg-Landau equation. Rev. Mod. Phys. 74(1), 99 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  • Arshad, M., Seadawy, A.R., Lu, D.: Exact bright-dark solitary wave solutions of the higher-order cubic-quintic nonlinear Schrödinger equation and its stability. Optik 138, 40–49 (2017)

    Article  ADS  Google Scholar 

  • Asma, M., Othman, W.A.M., Wong, B.R., Biswas, A.: Optical soliton perturbation with quadratic-cubic nonlinearity by semi-inverse variational principle. Proc. Romanian Acad. Series A 18, 331–336 (2017)

    MathSciNet  Google Scholar 

  • Biswas, A., Milovic, D., Savescu, M., Mahmood, M.F., Khan, K.R.: Optical soliton perturbation in nanofibers with improved nonlinear Schrödinger equation by semi-inverse variational principle. J. Nonlinear Opt. Phys. Mater. 21, 1250054 (2012)

    Article  ADS  Google Scholar 

  • Biswas, A., Ullah, M.Z., Zhou, Q., Moshokoa, S.P., Triki, H., Belic, M.: Resonant optical solitons with quadratic-cubic nonlinearity by semi-inverse variational principle. Optik 145, 18–21 (2017)

    Article  ADS  Google Scholar 

  • Cross, M.C., Hohenberg, P.C.: Pattern formation outside of equilibrium. Rev. Mod. Phys. 65(3), 851 (1993)

    Article  ADS  Google Scholar 

  • Gomez, C.A., Jhangeer, A., Rezazadeh, H., Talarposhti, R.A., Bekir, A.: Closed form solutions of the perturbed Gerdjikov-Ivanov equation with variable coefficients. East Asian J Appl. Math. 11(1), 207–218 (2021)

    Article  MathSciNet  Google Scholar 

  • Gómez-Aguilar, J.F., Osman, M.S., Raza, N., Zubair, A., Arshed, S., Ghoneim, M.E., Mahmoud, E.E., Abdel-Aty, A.H.: Optical solitons in birefringent fibers with quadratic-cubic nonlinearity using three integration architectures. AIP Adv. 11, 021521 (2021)

    Article  Google Scholar 

  • Hasegawa, A., Kodama, Y.: Solitons in optical communications. Oxford University Press, Oxford (1995)

    MATH  Google Scholar 

  • He, J.H.: Variational principles for some nonlinear partial differential equations with variable coefficients. Choas, Solitons Fract. 19, 847–851 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  • He, J.H.: Some asymptotic methods for strongly nonlinear equations. Int. J. Mod. Phys. B 20, 1141–1199 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  • He, J.H.: Fractal calculus and its geometrical explanation. Results Phys. 10, 272–276 (2018)

    Article  ADS  Google Scholar 

  • He, J.H.: A fractal variational theory for one-dimensional compressible flow in a microgravity space. Fractals 28, 2050024 (2020)

    Article  ADS  Google Scholar 

  • Huang, C., Li, Z.: New exact solutions of the fractional complex Ginzburg-Landau equation. Math. Probl. Eng. (2021). https://doi.org/10.1155/2021/6640086

    Article  MathSciNet  Google Scholar 

  • Hussain, A., Jhangeer, A., Abbas, N., Khan, I., Sherif, E.S.M.: Optical solitons of fractional complex Ginzburg-Landau equation with conformable, beta, and M-truncated derivatives: a comparative study. Adv. Diff. Equ. 2020,(2020). https://doi.org/10.1186/s13662-020-03052-7

  • Inc, M., Rezazedah, H., Vahidi, J., Eslami, M., Akinlar, M.A., Ali, M.N., Chu, Y.M.: New solitary wave solutions for the conformable Klein-Gordon equation with quantic nonlinearity. AIMS Math. 5(6), 6972–6984 (2020). https://doi.org/10.3934/math.2020447

    Article  MathSciNet  Google Scholar 

  • Kaplan, M., Ozer, M.N.: Auto-Bäcklund transformations and solitary wave solutions for the nonlinear evolution equation. Opt. Quant. Electron. 50(1), 33 (2017)

    Article  Google Scholar 

  • Kaplan, M., Hosseini, K., Samadani, F., Raza, N.: Optical soliton solutions of the cubic-quintic non-linear Schrödinger‘s equation including an anti-cubic term. J. Mod. Opt. 65(12), 1431–1436 (2018)

    Article  ADS  Google Scholar 

  • Khan, Y.: Fractal modification of complex Ginzburg-Landau model arising in the oscillating phenomena. Results in Physics 18, 103324 (2020)

    Article  Google Scholar 

  • Kolodner, P., Bensimon, D., Surko, C.M.: Traveling-wave convection in an annulus. Phys. Rev. Lett. 60, 1723 (1988)

    Article  ADS  Google Scholar 

  • Kudryashov, N.A.: The Painlevé approach for finding solitary wave solutions nonlinear nonintegrable differential equations. Optik 183, 642–649 (2019)

    Article  ADS  Google Scholar 

  • Kumar, D., Kaplan, M.: Application of the modified Kudryashov method to the generalized Schrödinger-Boussinesq equations. Opt. Quant. Electron. 50(9), 329 (2018)

    Article  Google Scholar 

  • Kuramoto, Y.: Chemical Oscillations. Waves and Turbulence Springer, New York (1984)

    Book  Google Scholar 

  • Leta, T.D., Liu, W., El Achab, A., Rezazedah, H., Bekir, A.: Dynamical behavior of traveling wave solutions for a (2+ 1)-dimensional Bogoyavlenskii coupled system. Qualitat. Theor. Dynam. Syst. 20(1), 1–22 (2021). https://doi.org/10.1007/s12346-021-00449-x

    Article  MathSciNet  MATH  Google Scholar 

  • Mollenauer, L.F., Gordon, J.P., Evangelide, S.G.: The sliding-frequency guiding filter: an improved form of soliton jitter control. Opt. Lett. 17, 1575–1577 (1992)

    Article  ADS  Google Scholar 

  • Par, C., Gagnon, L., Blanger, P.A.: Spatial solitary wave in a weakly saturated amplifying/absorbing medium. Opt. Commun. 74, 228–232 (1989)

    Article  ADS  Google Scholar 

  • Raza, N., Javid, A.: Optical dark and dark-singular soliton solutions of (1+2)-dimensional chiral nonlinear Schrödingers equation. Waves Random Complex Media 29, 496–508 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  • Raza, N., Zubair, A.: Optical dark and singular solitons of generalized nonlinear Schrödinger‘s equation with anti-cubic law of nonlinearity. Mod. Phys. Lett. B 33, 1950158 (2019)

    Article  ADS  Google Scholar 

  • Raza, N., Abdullah, M., Butt, A.R.: Analytical soliton solutions of Biswas-Milovic equation in Kerr and non-Kerr law media. Optik 157, 993–1002 (2018)

    Article  ADS  Google Scholar 

  • Raza, N., Afzal, U., Butt, A.R., Rezazadeh, H.: Optical solitons in nematic liquid crystals with Kerr and parabolic law nonlinearities. Opt. Quant. Electron. 51,(2019). https://doi.org/10.1007/s11082-019-1813-0

  • Rezazedah, H., Younis, M., Eslami, M., Bilal, M., Younas, U.: New exact traveling wave solutions to the (2+ 1)-dimensional Chiral nonlinear Schrödinger equation. Math. Model. Nat. Phenomena 16, 38 (2021). https://doi.org/10.1051/mmnp/2021001

    Article  MATH  Google Scholar 

  • Saarloos, W.V., Hohenberg, P.C.: Fronts, pulses, sources and sinks in generalized complex Ginzburg-Landau equations. Physica D 56, 303–367 (1992)

    Article  ADS  MathSciNet  Google Scholar 

  • Soto-Crespo, J.M., Pesquera, L.: Analytical approximation of the soliton solutions of the quintic complex Ginzburg-Landau equation 56, 7288 (1997)

  • Wu, J.: The inviscid limit of the complex Ginzburg-Landau equation. J. Differ. Equ. 142(2), 413–433 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  • Zhang, J.: Variational approach to solitary wave solution of the generalized Zakharov equation. Comput. Math. Appl. 54, 1043–1046 (2007)

    Article  MathSciNet  Google Scholar 

  • Zubair, A., Raza, N., Mirzazadeh, M., Liu, W., Zhou, Q.: Analytic study on optical solitons in parity-time-symmetric mixed linear and nonlinear modulation lattices with non-Kerr nonlinearities. Optik 173, 249–262 (2018)

    Article  ADS  Google Scholar 

Download references

Acknowledgement

The authors would like to thank the Deanship of Scientific Research at Majmaah University for supporting this work under project No. R-2021-262.

Funding

This work was supported by Deanship of Scientific Research at Majmaah University under project number R-2021-262.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nauman Raza.

Ethics declarations

Conflict of interest

Authors declare there is no conflict of interests regarding the publication of this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Raza, N., Alhussain, Z.A. Extraction of new bright and Kink soliton solutions related to Ginzburg Landau equation incorporating fractal effects. Opt Quant Electron 54, 26 (2022). https://doi.org/10.1007/s11082-021-03402-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-021-03402-z

Keywords

Navigation