Skip to main content
Log in

Photonic crystal fiber with high nonlinearity and extremely negative dispersion

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

In this manuscript, we have designed a circular photonic crystal fiber (PCF) having three rectangular holes filled with GaP in the core region, three air hole rings and one annular air ring in the cladding region. We found highest negative dispersion for the 1.8 μm pitch along with very low confinement loss at wavelength 1.55 μm. This designed PCF offers high nonlinearity (39,612 W−1 km−1) and high negative dispersion (− 6586 ps nm−1 km−1) along with zero confinement loss at 1.55 μm wavelength. We also compared the proposed PCF with the previously published PCF structure and found that the nonlinearity and negative dispersion of the designed PCF are very high in comparison to circular air hole based PCF. Other performance parameters viz. birefringence, numerical aperture, effective area, and effective material loss are also analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  • Agrawal, A., Azabi, Y.O., Rahman, B.M.A.: Staking the equiangular spiral. IEEE Photon. Technol. Lett. 25, 291–294 (2013)

    Article  ADS  Google Scholar 

  • Amin, M.N., Faisal, M.: Highly nonlinear polarization-maintaining photonic crystal fiber with nanoscale GaP strips. Appl. Opt. 55, 10030–10037 (2016)

    Article  ADS  Google Scholar 

  • Anas, M.T., Asaduzzaman, S., Ahmed, K., Bhuiyan, T.: Investigation of highly birefringent and highly nonlinear Hexa Sectored PCF with low confinement loss. Results in Physics 11, 1039–1043 (2018)

    Article  ADS  Google Scholar 

  • Aoni, R.A., Ahmed, R., Alam, M.M., Razzak, S.A.: Optimum design of a nearly zero ultra-flattened dispersion with lower confinement loss photonic crystal fibers for communication systems. Int. J. Sci. Eng. Res. 4, 1–4 (2013)

    Google Scholar 

  • Arif, M.F.H., Biddut, M.J.H.: Enhancement of relative sensitivity of photonic crystal fiber with high birefringence and low confinement loss. Optik 131, 697–704 (2017a)

    Article  ADS  Google Scholar 

  • Arif, M.F.H., Biddut, M.J.H.: A new structure of photonic crystal fiber with high sensitivity, high nonlinearity, high birefringence and low confinement loss for liquid analyte sensing applications, Sens. Bio-Sens. Res. 12, 8–14 (2017b)

    Google Scholar 

  • Atakaramians, S., Afshar, S., Monro, T.M., Abbott, D.: Terahertz dielectric waveguides. Advances in Optics and Photonics 5, 169–215 (2013)

    Article  ADS  Google Scholar 

  • Ayyanar, N., Raja, R.V.J., Vigneswaran, D., Lakshmi, B., Sumathi, M., Porsezian, K.: Highly efficient compact temperature sensor using liquid in- filtrated asymmetric dual elliptical core photonic crystal fiber. Opt. Mater. 64, 574–582 (2017)

  • Bise, R.T., Trevor, D.J.: Sol–gel derived microstructured fiber: fabrication and characterization. In: OFC/NFOEC Technical Digest of the Optical Fiber Communication Conference. Anaheim (CA, USA) (2005). https://doi.org/10.1109/OFC.2005.192772

  • Broeng, J., Mogilevstev, D., Barkou, S.E., Bjarklev, A.: Photonic crystal fibers: a new class of optical waveguides. Opt. Fiber Technol. 5(3), 305–330 (1999)

    Article  ADS  Google Scholar 

  • Brückner, V.: To the Use of Sellmeier formula. Senior Experten Service (SES) Bonn and HfT Leipzig 42, 242–250 (201) 

  • Cordeiro, C., Franco, M.A., Chesini, G., Barretto, E., Lwin, R., Brito, C.H., Cruz, M.C., Large: Microstructured-core optical fiber for evanescent sensing applications. Opt. Express 14, 13056–13066 (2006)

    Article  ADS  Google Scholar 

  • Chibrova, A.A., Shuvalov, A.A., Skibina, Y.S., Pidenko, P.S., Pidenko, S.A., Burmistrova, N.A., Goryacheva, I.Y.: The red shift of the semiconductor quantum dots luminescence maximum in the hollow core photonic crystal fibers. Opt. Mater.  73, 423–427 (2017)

  • da Silva, J.P., Bezerra, D.S., Rodriguez-Esquerre, V.F., da Fonseca, I.E.: and H.E. Hernández-Figueroa, Ge-doped defect-core microstructured fiber design by genetic algorithm for residual dispersion compensation. IEEE Photonics Technol. Lett. 22, 1337–1339 (2010)

    Article  ADS  Google Scholar 

  • Ebendorff-Heidepriem, H., Petropoulos, P., Asimakis, S., Finazzi, V., Moore, R., Frampton, K., Koizumi, F., Richardson, D., Monro, T.: Bismuth glass holey fibers with high nonlinearity. Opt. Express 12, 5082–5087 (2004)

    Article  ADS  Google Scholar 

  • Feehan, J.S., Price, J.H.V.: Efficient high-harmonic generation from a stable and compact ultrafast Yb-fiber laser producing 100 µJ, 350 fs pulses based on bendable photonic crystal fiber. Appl. Phys. B 123, 43 (2017)

    Article  ADS  Google Scholar 

  • Frazao, O., Santos, J.L., Araújo, F.M., Ferreira, L.A.: Optical sensing with photonic crystal fibers. Laser Photon. Rev. 2, 449–459 (2008)

    Article  ADS  Google Scholar 

  • Ghosh, D., Bose, S., Roy, S., Bhadra, S.K.: Design and fabrication of microstructured optical fibers with optimized core suspension for enhanced supercontinuum generation. J. Lightwave Technol. 33, 4156–4162 (2015)

    Article  ADS  Google Scholar 

  • Habib, M.S., Habib, M.S., Razzak, S.M.A., Hossain, M.A.: Proposal for highly bi-refringent broadband dispersion compensating octagonal photonic crystal fiber. Opt. Fiber Technol. 19, 461–467 (2013)

    Article  ADS  Google Scholar 

  • Hasan, M.I., Habib, M.S., Habib, M.S., Razzak, S.M.A.: Highly nonlinear and highly birefringent dispersion compensating photonic crystal fiber. Opt. Fiber Technol. 20, 32–38 (2014a)

    Article  ADS  Google Scholar 

  • Hasan, M.I., Razzak, S.M.A., Habib, M.S.: Design and characterization of highly birefringent residual dispersion compensating photonic crystal fiber. J. Lightw. Technol. 32, 4578–4584 (2014b)

    Article  Google Scholar 

  • Hasan, M.I., Mahmud, R.R., Morshed, M., Hasan, M.R.: Ultra-flattened negative dispersion for residual dispersion compensation using soft glass equiangular spiral photonic crystal fiber. J. Mod. Opt. 63, 1681–1687 (2016a)

    Article  ADS  Google Scholar 

  • Hasan, M.R., Anower, M.S., Hasan, M.I.: A Polarization Maintaining Single-Mode Photonic Crystal Fiber for Residual Dispersion Compensation. IEEE Photonics Technol. Lett. 28, 1782–1785 (2016b)

    Article  ADS  Google Scholar 

  • Holzwarth, R., Udem, T., Hänsch, T.W., Knight, J., Wadsworth, W., Russell, P.S.J.: Optical frequency synthesizer for precision spectroscopy. Phys. Rev. Lett. 85, 2264–2267 (2000)

    Article  ADS  Google Scholar 

  • Humbert, G., Wadsworth, W., Leon-Saval, S., Knight, J., Birks, T., Russell, P.S.J., Lederer, M., Kopf, D., Wiesauer, K., Breuer, E., Stifter, D.: Supercontinuum generation system for optical coherence tomography based on tapered photonic crystal fibre. Opt. Express 14, 1596–1603 (2006)

    Article  ADS  Google Scholar 

  • Islam, M.A., Alam, M.S.: Design optimization of equiangular spiral photonic crystal fiber for large negative flat dispersion and high birefringence. J. Lightw. Technol. 30, 3545–3551 (2012a)

    Article  ADS  Google Scholar 

  • Islam, M.A., Alam, M.S.: Design of a polarization-maintaining equiangular spiral photonic crystal fiber for residual dispersion compensation over E + S + C + L + U wavelength bands. IEEE Photon. Technol. Lett. 24, 930–932 (2012b)

    Article  ADS  Google Scholar 

  • Joannopoulos, J.D., Johnson, S.G., Winn, J.N., Meade, R.D.: Photonic Crystals: Molding the Flow of Light. Princeton University Press, Princeton (2011)

  • Keiser, G.: Optical Fiber Communications. McGraw-Hill, London (2008)

  • Knight, J.C.: Photonic crystal fiber. Nature 424, 847–851 (2003)

    Article  ADS  Google Scholar 

  • Knight, J.C., Birks, T.A., Russell, P.S.J., Atkin, D.M.: All-silica single-mode optical fiber with photonic crystal cladding. Optics letter 21, 1547–1549 (1996)

    Article  ADS  Google Scholar 

  • Krishna, G.D., Mahadevan, V.P., Pillai, Gopchandran, K.G.: Design of low dispersion and low loss photonic crystal fiber: Defected core circular-octagon hybrid lattices. Opt. Fiber. Technol. 51, 17–24 (2019)

    Article  ADS  Google Scholar 

  • Lecaplain, C., Ortaç, B., Machinet, G., Boullet, J., Baumgartl, M., Schreiber, T., Cormier, E., Hideur, A.: High-energy femtosecond photonic crystal fiber laser. Opt. Lett. 35, 3156–3158 (2010)

    Article  ADS  Google Scholar 

  • Limpert, J., Schreiber, T., Nolte, S., Zellmer, H., Tunnermann, T., Iliew, R., Lederer, F., Broeng, J., Vienne, G., Petersson, A., Jakobsen, C.: High-power air-clad large-mode- area photonic crystal fiber laser. Opt. Express 11, 818–823 (2003)

    Article  ADS  Google Scholar 

  • Pandey, S.K., Prajapati, Y.K., Maurya, J.B.: Design of simple circular photonic crystal fiber having high negative dispersion and ultra-low confinement loss. Results in Optics 1, 100024 (2020)

    Article  Google Scholar 

  • Pandey, S.K., Maurya, J.B., Verma, R.N., Prajapati, Y.K.: Multimode hexagonal photonic crystal fiber for extremely negative chromatic dispersion and low confinement loss. Opt. Quant. Electron. 53, 1–12 (2021)

    Article  Google Scholar 

  • Paul, B.K., Khalek, M.A., Chakma, S., Ahmed, K.: Chalcogenide embedded quasi photonic crystal fiber for nonlinear optical applications. Ceram. Int. 44, 18955–18959 (2018)

    Article  Google Scholar 

  • Prajapati, Y.K., Srivastava, V.K., Singh, V., Saini, J.P.: Effect of germanium doping on the performance of silica based photonic crystal fiber. Optik 155, 149–156 (2018)

    Article  ADS  Google Scholar 

  • Prajapati, Y.K., Kumar, R., Singh, V.: Design of a photonic crystal fiber for dispersion compensation and sensing applications using modified air holes of the cladding. Braz. J. Phys. 49, 745–751 (2019)

  • Razzak, S.M.A., Namihira, Y.: Proposal for Highly Nonlinear Dispersion-Flattened Octagonal Photonic Crystal Fibers. IEEE Photonics Technol. Lett. 20, 249–251 (2008)

    Article  ADS  Google Scholar 

  • Saitoh, K., Koshiba, M., Member, S.: Full-vectorial imaginary distance beam propagation method based on a finite element scheme: application to photonic crystal fibers. IEEE J. Quantum Electron. 38, 927–933 (2002)

    Article  ADS  Google Scholar 

  • Sultana, J., Islam, M.S., Faisal, M., Islam, M.R., Ng, B.W.H., Ebendorff-Heidepriem, H., Abbott, D.: Highly birefringent elliptical core photonic crystal fiber for terahertz application. Opt. Commun. 407, 92–96 (2018)

    Article  ADS  Google Scholar 

  • Tausenev, V., Kryukov, P.G., Bubnov, M.M., Likhachev, M.E., Romanova, E.Y., Yashkov, M.V., Khopin, V.F., Salganskii, M.Y.: Efficient source of femtosecond pulses and its use for broadband supercontinuum generation. Quant. Elect. 35, 581–585 (2005)

    Article  ADS  Google Scholar 

  • Tee, D.C., Abu Bakar, M.H., Tamchek, N., Mahamd, F.M., Adikan: Photonic crystal fiber in photonic crystal fiber for residual dispersion compensation over E + S + C + L + U wavelength bands. IEEE Photonics J. 5, 7200607–7200607 (2013)

    Article  ADS  Google Scholar 

  • Várallyay, Z., Saitoh, K.: Photonic crystal fibre for dispersion control. Front. Guided Wave Opt. Optoelectron. 10, 183–208 (2010)

  • Wang, Y., Zhang, X., Ren, X., Zheng, L., Liu, X., Huang, Y.: Design and analysis of a dispersion flattened and highly nonlinear photonic crystal fiber with ultralow confinement loss. Appl. Opt. 49(3), 292–297 (2010)

    Article  ADS  Google Scholar 

  • Zhao, T., Lian, Z., Benson, T., Wang, X., Zhang, W., Lou, S.: Highly nonlinear polarization maintaining As2Se3 based photonic quasi crystal fiber for supercontinuum generation. Opt. Mater. 73, 343–349 (2017)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yogendra Kumar Prajapati.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pandey, S.K., Maurya, J.B. & Prajapati, Y.K. Photonic crystal fiber with high nonlinearity and extremely negative dispersion. Opt Quant Electron 53, 724 (2021). https://doi.org/10.1007/s11082-021-03376-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-021-03376-y

Keywords

Navigation