Skip to main content
Log in

Research on output characteristics based on QD-SOA and QD-RSOA cross gain modulation all-optical logic NOR gate

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

The performance of NOR functions implemented all-optically (AO) using quantum dot semiconductor optical amplifier (QD-SOA) and quantum dot reflective semiconductor optical amplifier (QD-RSOA) based on cross gain modulation effect is simulated and investigated. The dependence of the output extinction ratio and conversion efficiency on key parameters is analyzed and assessed. The obtained results show that the NOR AO Boolean functions can simultaneously be realized with the employed scheme with logical correctness, high output extinction ratio and conversion efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Bogoni, A., Poti, L., Ghelfi, P., Scaffardi, M., Porzi, C., Ponzini, F., Meloni, G., Berrettini, G., Malacarne, A., Prati, G.: OTDM-based optical communications networks at 160 Gbit/s and beyond. Opt. Fiber Technol. 13, 1–12 (2007)

    Article  ADS  Google Scholar 

  • Dimitriadou, E., Zoiros, K.E.: All-optical XOR gate using single quantum-dot SOA and optical filter. J. Lightwave Technol. 31, 3813–3821 (2013)

    Article  ADS  Google Scholar 

  • Dong, J., Zhang, X., Huang, D.: Theoretical analysis of wavelength converter based on single-ended coupling SOA. COS (2004)

  • Ezra, Y.B., Lembrikov, B.I., Haridim, M.: Theoretical analysis of gain-recovery time and chirp in QD-SOA. IEEE Photon. Technol. Lett. 17, 1803–1805 (2005)

    Article  ADS  Google Scholar 

  • Hakimian, F., Shayesteh, M.R., Moslemi, M.R.: Optimization of a quantum-dot semiconductor optical amplifier (QD-SOA) design using the genetic algorithm. Opt. Quant. Electron. 52(48), 1-14, (2020)

    Google Scholar 

  • Khalil, S.A., Amir, H.S., Michael, J.C., Ali, R.: Performance enhancement of an all-optical XOR gate using quantum-dot based reflective semiconductor optical amplifiers in a folded Mach-Zehnder interferometer. Opt. Laser Technol. 135 (106628), 1–9 (2021)

  • Kotb, A.: Performance of all-optical XOR gate based on two-photon absorption in semiconductor optical amplifier-assisted Mach-Zehnder interferometer with effect of amplified spontaneous emission. J Korean Phys. S. 66, 1593–1598 (2015)

    Article  Google Scholar 

  • Kotb, A., Zoiros, K.E., Guo, C.: All-optical XOR, NOR, and NAND logic functions with parallel semiconductor optical amplifier-based Mach-Zehnder interferometer modules. Opt. Laser Technol. 108, 426–433 (2018a)

    Article  ADS  Google Scholar 

  • Kotb, A., Zoiros, K.E., Guo, C.: Performance investigation of 120Gb/s all-optical logic XOR gate using dual-reflective semiconductor optical amplifier-based scheme. J. Comput. Electron. 17, 1640–1649 (2018b)

    Article  Google Scholar 

  • Kotb, A.: All-optical logic gates using semiconductor optical amplifier. Lap Lambert Academic Publishing 41, 1397–1399 (2012)

  • Li, Q., Pan, W., Li, H.T., Luo, B.: Theoretical research based on LOA-XGM all-optical logic AND gate. Res. Prog. S. S. E. 29, 67–71 (2009)

    Google Scholar 

  • Lovkesh, Sharma, V., Singh, S.: The design of a reconfigurable all-optical logic device based on cross-phase modulation in a highly nonlinear fiber. J. Comput. Electron. 20, 1–12 (2021)

    Article  Google Scholar 

  • Mukherjee, K.: Non-MZI all-optical XOR gate using cross-gain modulation in quantum dot semiconductor optical amplifier at 2 Tb/s without filter. J. Optics-UK, 3, (2021)

  • Ramachandran, M., Prince, S., Verma, D.: Design and performance analysis of all-optical cascaded adder using SOA-based MZI. J. Comput. Electron. 17, 1–12 (2018)

    Article  Google Scholar 

  • Rendón-Salgado, I., Gutiérrez-Castrejón, R.: 160 Gb/s all-optical AND gate using bulk SOA turbo–switched Mach-Zehnder interferometer. Opt. Commun. 399, 77–86 (2017)

    Article  ADS  Google Scholar 

  • Rendón-Salgado, I., Ramírez-Cruz, E., Gutiérrez-Castrejón, R.: 640 Gb/s all-optical and gate and wavelength converter using bulk SOA turbo-switched Mach-Zehnder interferometer with improved differential scheme. Opt. Laser Technol. 109, 671–681 (2019)

    Article  ADS  Google Scholar 

  • Rendón-Salgado, I., Ramírez-Cruz, E., Gutiérrez-Castrejón, R.: All-optical demultiplexing of a 640 Gbit/s OTDM signal using bulk SOA turbo-switched Mach-Zehnder interferometer with improved differential scheme. 20th ICTON 1–4(2018)

  • Reschner, D.W., Gehrig, E., Hess, O.: Pulse amplification and spatio-spectral hole-burning in homogeneously broadened quantum-dot semiconductor optical amplifiers. IEEE J. Quantum Elect. 45, 21–33 (2009)

    Article  ADS  Google Scholar 

  • Saleh, A.A.M.: All-optical networking-evolution, benefits, challenges, and future vision. P. IEEE. 100, 1105–1117 (2012)

    Article  Google Scholar 

  • Sharaiha, A., Topomondzo, J., Morel, P.: All-optical logic AND–NOR gate with three inputs based on cross-gain modulation in a semiconductor optical amplifier. Opt. Commun. 265, 322–325 (2006)

    Article  ADS  Google Scholar 

  • Singh, S., Lovkesh: Ultrahigh speed optical signal processing logic based on an SOA-MZI. IEEE J. Sel. Top. Quant. 18, 970–977 (2012)

  • Singh, S., Singh, D., Lovkesh: optical combinational circuit for contention detection circuit in all optical router. Opt. Int. J. Light Electron Opt. 218 (165251), 1–8 (2020)

  • Singh, P., Tripathi, D.K., Jaiswal, S., Dixit, H.K.: Designs of all-optical buffer and or gate using SOA-MZI. Opt. Quant. Electron. 46, 1435–1444 (2014)

    Article  Google Scholar 

  • Singh, K., Kaur, G., Singh, M.L.: Simultaneous all-optical half-adder, half-subtracter, comparator, and decoder based on nonlinear effects harnessing in highly nonlinear fibers. Opt. Eng. 55 (077104), 1–11 (2016)

  • Singh, S., Singh, S., Ngo, Q.M.: Design of all optical contention detection circuit based on HNLF at the data rate of 120Gbps. Opt. Fiber Technol. 52 (101958), 1–6 (2019)

  • Willner, A.E., Khaleghi, S., Chitgarha, M.R., Yilmaz, O.F.: All-optical signal processing. J. Lightwave Technol. 32, 660–680 (2014)

    Article  ADS  Google Scholar 

  • Yu, Y., Huang, L., Xu, M., Tian, P., Huang, D.: Enhancement of gain recovery rate and cross-gain modulation bandwidth using a two-electrode quantum-dot semiconductor optical amplifier. J. Opt. Soc. Am. B 27, 2211–2217 (2010)

    Article  ADS  Google Scholar 

  • Zhang, X., Li, W., Hu, H., Dutta, N.K.: High-speed all-optical encryption and decryption based on two-photon absorption in semiconductor optical amplifiers. J. Opt. Commun. Netw. 7, 276–285 (2015)

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (Grant No. 61674096) and Shandong Province Natural Science Foundation (Grant No. ZR2019PA010).

Author information

Authors and Affiliations

Authors

Contributions

The manuscript was written through contributions of all authors. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Hailong Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Consent to participate

Consent to participate was obtained from all participants.

Consent for publication

Consent for publication was obtained from all participants.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Wang, H., Kong, X. et al. Research on output characteristics based on QD-SOA and QD-RSOA cross gain modulation all-optical logic NOR gate. Opt Quant Electron 53, 715 (2021). https://doi.org/10.1007/s11082-021-03372-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-021-03372-2

Keywords

Navigation