Skip to main content
Log in

Modeling and characterization of carrier mobility for truncated conical quantum dot infrared photodetectors

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

In the present paper, a theoretical model for calculating the carrier mobility which is a result of the existence of a truncated conical quantum dots of n-type quantum dot infrared photodetectors (QDIPs) is developed. This model is built on solving Boltzmann’s transport equation that is a complex integro-differential equation describing the carrier transport. The time-domain finite-difference method is used in this numerical solution. The influences of dimensions and density of the QDs for this structure on the carrier mobility are studied. Eventually, the calculated mobility for truncated conical InAs/GaAs QDIP is contrasted to other conical, spherical, and hemispherical QD structures. The model put forward is a generic model that is applicable to various structures of truncated conical QDs devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Code availability

The authors declare that they have made their custom code.

References

  • Ameen, T.A., El-Batawy, Y.M.: Polarization dependence of absorption by bound electrons in self-assembled quantum dots. J. Appl. Phys. 113(19), 193102 (2013)

  • Ameen, T.A., El-Batawy, Y.M., Abouelsaood, A.A.: Modeling of the quantum dot filling and the dark current of quantum dot infrared photodetectors. J. Appl. Phys. 115(6), 063703 (2014)

  • Ameen, T.A., El-Batawy, Y.M.: Bound to continuum absorption coefficient for spherical and conical quantum dots. J. Opt. Quant. Electron. 47(2), 149–157 (2015). https://doi.org/10.1007/s11082-014-9894-2

  • Banoo, K., Technologies, A., Shu, C., Jerome, J.W.: Simulating quasi-ballistic transport in si nanotransistors. VLSI DESIGN 13(1–4), 5–13 (2001). https://doi.org/10.1155/2001/16023

    Article  Google Scholar 

  • Barve, A.V., Lee, S.J., Noh, S.K., Krishna, S.: Review of current progress in quantum dot infrared photodetectors. Laser Photonics Rev. 4(6), 738–750 (2010). https://doi.org/10.1002/lpor.200900031

    Article  ADS  Google Scholar 

  • Dardano, P., Ferrara, M.A.: Integrated photodetectors based on Group IV and colloidal semiconductors: Current state of affairs. Micromachines 11(9), 842 (2020). https://doi.org/10.3390/MI11090842

  • Deviprasad, V.P., Das, D., Tongbarm, B., Panda, D., Paul, S., Mondal, S., Chakrabarti, S.: Spatial optimization of modulation doping in P-I-P QDIPs: towards achieving higher operating temperature. IEEE Trans. Nanotechnol. 19(c), 247–254, 2020. https://doi.org/10.1109/TNANO.2019.2937093

  • El-Batawy, Y.M., Hosny, A.: Modeling of carrier mobility for semispherical quantum dot infrared photodetectors (QDIPs). J. Opt. Quantum Electron. 52(2), 60 (2020)

  • Ghimire, H., Jayaweera, P.V.V., Somvanshi, D., Lao, Y., Perera, A.G.U.: Recent progress on extended wavelength and split-offband heterostructure infrared detectors. Micromachines 11(6), 1–16 (2020). https://doi.org/10.3390/mi11060547

    Article  Google Scholar 

  • Lim, H., Zhang, W., Tsao, S., Sills, T., Szafraniec, J., Mi, K., Movaghar, B., Razeghi, M.: Quantum dot infrared photodetectors: comparison of experiment and theory. Phys. Rev. B Condens. Matter Mater. Phys. 72(8), 1–15 (2005). https://doi.org/10.1103/PhysRevB.72.085332

  • Liu, H.C., Gao, M., McCaffrey, J., Wasilewski, Z.R., Fafard, S.: Quantum dot infrared photodetectors. Appl. Phys. Lett. 78(1), 79–81 (2001). https://doi.org/10.1063/1.1337649

    Article  ADS  Google Scholar 

  • Liu, H., Tong, Q., Liu, G., Yang, C., Shi, Y.: Performance characteristics of quantum dot infrared photodetectors under illumination condition. Opt. Quantum Electron. 47(3), 721–733 (2015). https://doi.org/10.1007/s11082-014-9947-6

    Article  Google Scholar 

  • Martyniuk, P., Rogalski, A.: Quantum-dot infrared photodetectors: Status and outlook. Prog. Quantum Electron. 32(3–4), 89–120 (2008). https://doi.org/10.1016/j.pquantelec.2008.07.001

    Article  ADS  Google Scholar 

  • Naser, M.A., Deen, M.J., Thompson, D.A.: Photocurrent modeling and detectivity optimization in a resonant-tunneling quantum-dot infrared photodetector. EEE J. Quantum Electron. 46(6), 849–859 (2010). https://doi.org/10.1109/JQE.2010.2040245

    Article  ADS  Google Scholar 

  • Piprek, J.: Semiconductor Optoelectronic Devices: Introduction to Physics and Simulation. Academic Press Inc., San Diego, California (2003)

    Google Scholar 

  • Ridley, B.K.: Quantum Processes in Semiconductors, 4th edn. Oxford University Press Inc., New York (1999)

    MATH  Google Scholar 

  • Sengupta, S., Chakrabarti, S.: Structural, optical and spectral behaviour of InAs-based quantum dot heterostructures: applications for high-performance infrared photodetectors (2017)

  • Shur, M.S.: GaAs devices and circuits. Springer Science & Business Media (2013)

  • Youssef, S., El-Batawy, Y.M., Abouelsaood, A.A.: Effect of self assembled quantum dots on carrier mobility, with application to modeling the dark current in quantum dot infrared photodetectors. J. Appl. Phys. 120(12), 124506 (2016). https://doi.org/10.1063/1.4963287

Download references

Funding

The authors declare that they did not receive any funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yasser M. El-Batawy.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El-Batawy, Y.M., Feraig, M. Modeling and characterization of carrier mobility for truncated conical quantum dot infrared photodetectors. Opt Quant Electron 53, 706 (2021). https://doi.org/10.1007/s11082-021-03346-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-021-03346-4

Keywords

Navigation