Skip to main content
Log in

Inverted ternary OPD based on PEIE

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

In today’s rapid development of multiphase organic photodetectors(OPDs), research on inverted ternary OPDs is very necessary. Therefore, this paper innovatively proposes an inverted ternary organic photodetector(OPD) with a structure of ITO/PEIE/PC\(_{61}\)BM/P3HT: PCPDTBT/MoO\(_{3}\)/Al. And the PEIE electron transport layer(ETL), which is essential for the inverted structure, is used to study the effects of different thicknesses. Different thicknesses of PEIE have different effects on the photoelectric characteristics of the device. For the photodetector spin-coated with 0.15wt% PEIE solution, the photodetector shows resistance characteristics. For the photodetector spin-coated with 0.40wt% PEIE solution, the photodetector shows the characteristics of the photodiode. For the photodetector spin-coated with 0.45wt% PEIE solution, the photodetector shows the characteristics of a photomultiplier diode. The underlying mechanism is that different thicknesses of PEIE have different energy levels for ITO, and different cathode energy levels have huge differences in the working mechanism of the device.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • An, T., Gong, W., Ma, J., et al.: Photoelectronic multiplication organic photodetectors with facile fabrication and controllable operating voltage. Org. Electron. 67, 320–326 (2019)

    Article  Google Scholar 

  • An, T., Liu, X., Ma, J., et al.: A new method to enhance organic photodetectors active layer trap doping by blending doping. Semicond. Sci. Tech. 35, 1–5 (2020)

    Article  Google Scholar 

  • Anefnaf, I., Aazou, S., Schmerber, G., et al.: Tailoring PEIE capped ZnO binary cathode for solution-processed inverted organic solar cells. Opt. Mater. 6, 111070 (2021)

    Article  Google Scholar 

  • Gong, W., An, T., Liu, X., et al.: Realizing photomultiplication-type organic photodetectors based on C60-doped bulk heterojunction structure at low bias. Chinese Phys. B 3, 038501 (2019)

    Article  ADS  Google Scholar 

  • Iftikhar, S., Aslam, S., Butt, N., et al.: Prato reaction derived polythiophene/C-60 donor-acceptor double cable polymer, fabrication of photodetectors and evaluation of photocurrent generation. J. Mater. Chem. C 48, 17365–17373 (2020)

    Article  Google Scholar 

  • Jansen-Van, R., Armin, A., Pandey, A., et al.: Organic photodiodes: the future of full color detection and image sensing. Adv. Mater. 28, 4766–4802 (2016)

    Article  Google Scholar 

  • Jonas, K., Axel, F., Shen, X., et al.: Enhancing sub-bandgap external quantum efficiency by photomultiplication for narrowband organic near-infrared photodetectors. Nat. Commun. 12, 4259 (2021)

    Article  ADS  Google Scholar 

  • Klab, T., Luszczynska, B., Ulanski, J., et al.: Influence of PEIE inter-layer on detectivity of red-light sensitive organic non-fullerene photodetectors with reserve structure. Org. Electron. 77, 105527 (2020)

    Article  Google Scholar 

  • Kublitski, J., Hofacker, A., Boroujeni, B., et al.: Reverse dark current in organic photodetectors and the major role of traps as source of noise. Nat. Commun. 12, 551–551 (2021)

    Article  ADS  Google Scholar 

  • Li, Y., Chen, H., Zhang, J., et al.: Carrier blocking layer materials and application in organic photodetectors. Nanomaterials 11, 1404–1404 (2021)

    Article  Google Scholar 

  • Li, C., Wang, H., Wang, F., et al.: Ultrafast and broadband photodetectors based on a perovskite/organic bulk heterojunction for large-dynamic-range imaging. Light- Sci. Appl. 9, 18508–18514 (2020)

    Google Scholar 

  • Li, W., Xu, Y., Meng, X., et al.: Visible to near-infrared photodetection based on ternary organic heterojunctions. Adv. Funct. Mater. 29, 1808948 (2019)

    Article  Google Scholar 

  • Li, L., Zhang, F., Wang, W., et al.: Trap-assisted photomultiplication polymer photodetectors obtaining an external quantum efficiency of 37500%. ACS App. Mater. Inter. 7, 5890–5897 (2015)

    Article  Google Scholar 

  • Liu, J., Wang, Y., Wen, H., et al.: Organic photodetectors: materials, structures, and challenges. Sol. RRL 4, 2000139 (2020)

    Article  Google Scholar 

  • Liu, M., Wang, J., Yang, K., et al.: Broadband photomultiplication organic photodetectors. Phys. Chem. Chem. Phys. 4, 2923–2929 (2021)

    Article  Google Scholar 

  • Liu, J., Jiang, J., Wang, S., et al.: Fast Response Organic Tandem Photodetector for Visible and Near-Infrared Digital Optical Communications. Small, 2101316 (2021)

  • Oliveira, J., Brito-Pereira, R., Goncalves, B., et al.: Recent developments on printed photodetectors for large area and flexible applications. Org. Electron. 66, 216–226 (2019)

    Article  Google Scholar 

  • Shafian, S., Jang, Y., Kim, K., et al.: Solution processed organic photodetector utilizing an interdiffused polymer/fullerene bilayer. Opt. Exp. 23, A936–A946 (2015)

    Article  ADS  Google Scholar 

  • Shen, L., Zhang, Y., Bai, Y., et al.: A filterless, visible-blind, narrow-band, and near-infrared photodetector with a gain. Nanoscale 8, 12990–12997 (2016)

    Article  ADS  Google Scholar 

  • Shi, L., Chen, K., Zhai, A., et al.: Status and outlook of Metal-inorganic Semiconductor-metal photodetectors. Laser Photonics Rev. 15, 2000401 (2020)

    Article  ADS  Google Scholar 

  • Valouch, S., Hones, C., Kettlitz, S., et al.: Solution processed small molecule organic interfacial layers for low dark current polymer photodiodes. Org. Electron. 13, 2727–2732 (2012)

    Article  Google Scholar 

  • Wang, H., Zheng, Y., Qin, R., et al.: Highly sensitive panchromatic ternary polymer photodetectors enabled by Förster resonance energy transfer and post solvent treatment. J. Phys. D Appl. Phys. 51, 104002 (2018)

    Article  ADS  Google Scholar 

  • Wang, Y., Zhu, L., Hu, Y., et al.: High sensitivity and fast response solution processed polyethylenimine ethoxylated(PEIE) modified ITO electrode. Res. Art Opt Exp. 25, 7719–7729 (2017)

    Article  Google Scholar 

  • Wang, F., Zou, X., Xu, M., et al.: Recent progress on electrical and optical manipulations of perovskite photodetectors. Adv. Sci. 8, 2100569 (2021)

    Article  Google Scholar 

  • Yang, D., Zhou, X., Ma, D., et al.: Fast response organic photodetectors with high detectivity based on rubrene and C60. Org. Electron. 14, 3019–3023 (2013)

    Article  Google Scholar 

  • Zang, Y., Huang, D., Di, C., et al.: Device engineered organic transistors for flexible sensing applications. Adv. Mater. 28, 4549–4555 (2016)

    Article  Google Scholar 

Download references

Acknowledgements

The author is particularly grateful to the Shaanxi Provincial Natural Science Foundation Research Project Fund for its support, Fund Number 2019JM-251.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tao An.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

An, T., Liu, S. Inverted ternary OPD based on PEIE. Opt Quant Electron 53, 699 (2021). https://doi.org/10.1007/s11082-021-03344-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-021-03344-6

Keywords

Navigation