Skip to main content
Log in

Innovative relay selection and optimize power allocation for free space optical communication

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

Nowadays, Free Space Optical (FSO) communication has attained great importance because of high features such as large data rate, low power, and huge bandwidth. However, FSO technology suffers from several atmospheric effects such as rain, snow, fog, etc. To overcome these issues, an innovative Selective Active Relay (SAR) protocol is proposed in this research. Here, the SAR method is utilized for selecting the relays in FSO, which is used for better communication without any difficulties like atmospheric conditions. Also, a novel Water Pouring Erbium-Doped Fiber Amplifier (WPEDFA) method is introduced to allocate the power for relays and calculates the outage probability. Moreover, the current research introduces an innovative Optimum Enhanced African Buffalo (OE-AB) algorithm to optimize the error and outage probability. Eventually, the proposed approach analyzes the Bit Error Rate (BER) and Quality factor (Q-factor) under atmospheric conditions. Also, the proposed WPEDFA approach is utilized for allocating power to the relays. Moreover, the OE-AB algorithm optimizes the error rate and outage probability. Also, the simulation of this model is done by MATLAB, and attained results prove the effectiveness of the proposed approach. Consequently, it achieves a lower BER and outage probability compared with other techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  • Aberle, D., El-saden, S., Abbona, P., Gomez, A.: A primer on imaging anatomy and physiology. Medical Imaging Informatics, pp. 15–90. Springer, Boston, MA (2010). https://doi.org/10.1007/978-1-4419-0385-3_2

  • Abovitz, R., Schowengerdt, B.T., Watson, M.D.: Optical system having a return planar waveguide, U.S. Patent Application No. 14/707,354 (2017).

  • Akyildiz, I.F., Jornet, J.M., Han, C.: TeraNets: Ultra-broadband communication networks in the terahertzband. IEEE Wirel. Commun. 21(4), 130–135 (2014). https://doi.org/10.1109/MWC.2014.6882305

    Article  Google Scholar 

  • Al-Gailani, S.A., Mohammad, A.B., Shaddad, R.Q.: Enhancement of free space optical link in heavy rain attenuation using multiple beam concept. Optik-Int. J. Light Electron Opt. 124(21), 4798–4801 (2013). https://doi.org/10.1016/j.ijleo.2013.01.098

    Article  Google Scholar 

  • Ali, M.A.A.: Analysis of data rate for free space optical communications system. IJECT 5(Spl-1) (2014).

  • Alshaer, N., Ismail, T., Nasr, M.E.: Enhancing earth-to-satellite FSO system spectrum efficiency with adaptive M-ary PSK and SIMO in presence of scintillation and beam wander. AEU-Int. J. Electron. Commun. 125, 153366 (2020). https://doi.org/10.1016/j.aeue.2020.153366

    Article  Google Scholar 

  • Alweshah, M., Rababa, L., Ryalat, M.H., Al Momani, A., Ababneh, M.F.: African Buffalo algorithm: training the probabilistic neural network to solve classification problems. J. King Saud Univ., Comp. & Info. Sci. (2020). https://doi.org/10.1016/j.jksuci.2020.07.004

  • Arya, S., Chung, Y.H.: Spectrum sensing for free space optical communications in strong atmospheric turbulence channel. Opt. Commun. 445, 24–28 (2019). https://doi.org/10.1016/j.optcom.2019.04.009

    Article  ADS  Google Scholar 

  • Ayyadurai, M., Raja, S.S.: Optimisation of data reliability in UASN using adaptive Buffalo algorithm. J. Ambient Intell. Humaniz. Comput., pp 1–12 (2020). https://doi.org/10.1007/s12652-020-02018-7

  • Badar, N., Jha, R.K., Towfeeq, I.: Performance analysis of an 80 (8×10) Gbps RZ-DPSK based WDM-FSO system under combined effects of various weather conditions and atmospheric turbulence induced fading employing Gamma–Gamma fading model. Opt. Quantum Electron. 50(1) (2018). https://doi.org/10.1007/s11082-017-1306-y

  • Biswas, S.K., Biswas, P., Akhtar, J.: Estimation of link range and bit rate for 16 channel WDM-FSO considering atmospheric turbulence and pointing error under various weather conditions. 2017 International Conference on Electrical, Computer and Communication Engineering (ECCE). IEEE (2017). https://doi.org/10.1109/ECACE.2017.7913019

  • Boluda-Ruiz, R., García-Zambrana, A., Castillo-Vázquez, B., Castillo-Vázquez, C., Qaraqe, K.: On the beam width optimization for the ergodic capacity of FSO channels with misalignment errors modeled by beckmann distributions. IEEE Photonics J. 10(5), 1–14 (2018). https://doi.org/10.1109/JPHOT.2018.2871509

    Article  Google Scholar 

  • Boluda-Ruiz, R., García-Zambrana, A.: Ergodic Capacity Optimization of FSO Systems over Gamma-Gamma Atmospheric Turbulence Channels with Generalized Pointing Errors. 2018 11th International Symposium on Communication Systems, Networks & Digital Signal Processing (CSNDSP). IEEE (2018). https://doi.org/10.1109/CSNDSP.2018.8471810

  • Cai, S., Zhang, Z., Chen, X.: Free-space optical relaying system with few-mode all-optical relay. Opt. Commun. 439, 164–170 (2019)

    Article  ADS  Google Scholar 

  • Campbell, J.R., Hlavka, D.L., Welton, E.J.: Full-time, eye-safe cloud and aerosol lidar observation at atmospheric radiation measurement program sites: Instruments and data processing. J. Atmos. Oceanic Technol. 19(4), 431–442 (2002). https://doi.org/10.1175/1520-0426(2002)019%3c0431:FTESCA%3e2.0.CO;2

    Article  ADS  Google Scholar 

  • Daniel, V., Inneman, A., Vertat, I., Baca, T., Nentvich, O.: In-Orbit Commissioning of Czech Nanosatellite VZLUSAT-1 for the QB50 Mission with a Demonstrator of a Miniaturised Lobster-Eye X-Ray Telescope and Radiation Shielding Composite Materials. Space Sci. Rev. 215(5), 40 (2019). https://doi.org/10.1007/s11214-019-0589-7

    Article  ADS  Google Scholar 

  • Debnath, S., Bhowmik, B.B., Mukherjee, M.: Free Space Optical Communication Channel Modelling with PIN Receiver. Smart Computing Paradigms: New Progresses and Challenges, pp. 259–268. Springer, Singapore (2020). https://doi.org/10.1007/978-981-13-9680-9_22

  • Haque, F., Chowdhury, S.J., Ahsan, S.S., Rahman, M.: Fiber to the Antenna: a closer look at benefits and issues in integrated optical and wireless networks. Diss., BRAC University (2014). http://hdl.handle.net/10361/3593

  • Hassibi, B., Hochwald, B.M.: High-rate codes that are linear in space and time. IEEE Trans. Inf. Theory 48(7), 1804–1824 (2002). https://doi.org/10.1109/TIT.2002.1013127

    Article  MathSciNet  MATH  Google Scholar 

  • Huang, S., Safari, M.: Spatial-mode multiplexing with mutually coherent channels in free space optical communications. 2018 IEEE Wireless Communications and Networking Conference (WCNC). IEEE (2018). https://doi.org/10.1109/WCNC.2018.8377109

  • James, P., Ito, K., Banay, R.F., Buonocore, J.J.: A Health Impact Assessment of a proposed bill to decrease speed limits on local roads in Massachusetts (USA). Int. J. Environ. Res. Public Health. 11(10), 10269–10291 (2014). https://doi.org/10.3390/ijerph111010269

    Article  Google Scholar 

  • Khalighi, M.A., Uysal, M.: Survey on free space optical communication: A communication theory perspective. IEEE Commun. Surv. Tutor. 16(4), 2231–2258 (2014). https://doi.org/10.1109/COMST.2014.2329501

    Article  Google Scholar 

  • Khanna, H., Aggarwal, M., Ahuja, S.: Outage Analysis of an Inter-relay Assisted Free Space Optical Communication System. Advances in Optical Science and Engineering, pp. 301–308. Springer, Singapore (2017).

  • Koffer, G.W., Branham, D.R.: Hand-held micropipettor with improved pipette tip ejector. U.S. Patent No. 4009611 (1977).

  • Krisnawati, M., Sibarani, A.A., Mustikasari, A., Aulia, D.: African Buffalo Optimization for Solving Flow Shop Scheduling Problem to Minimize Makespan. IOP Conference Series: Materials Science and Engineering, vol. 982, no. 1. IOP Publishing (2020).

  • Le, H.D., Mai, V.V., Nguyen, C.T., Thang, T.C.: Modeling and Throughput Analysis of FSO Systems using GBN-ARQ and AR Transmission over Atmospheric Turbulence Channels. 2018 11th International Symposium on Communication Systems, Networks & Digital Signal Processing (CSNDSP). IEEE (2018). https://doi.org/10.1109/CSNDSP.2018.8471778

  • Leitgeb, E., Gebhart, M., Birnbacher, U.: High availability of hybrid wireless networks, Reliability of Optical Fiber Components, Devices, Systems, and Networks II. Int. Soc. Op. Photonics 5465 (2004). https://doi.org/10.1117/12.545456

  • Malik, A., Singh, P.: Free space optics: current applications and future challenges. Int. J. Opt. 2015 (2015). https://doi.org/10.1155/2015/945483

  • Meddour, D.E., Rasheed, T., Gourhant, Y.: On the role of infrastructure sharing for mobile network operators in emerging markets. Comput. Netw. 55(7), 1576–1591 (2011). https://doi.org/10.1016/j.comnet.2011.01.023

    Article  Google Scholar 

  • Miglani, R., Malhotra, J.S.: An innovative approach for performance enhancement of 320 Gbps free space optical communication system over turbulent channel. Opt. Quantum Electron. 51(9), 289 (2019a). https://doi.org/10.1007/s11082-019-2004-8

    Article  Google Scholar 

  • Miglani, R., Malhotra, J.S.: Performance enhancement of high-capacity coherent DWDM free-space optical communication link using digital signal processing. Photonic Netw. Commun. 38(3), 326–342 (2019b). https://doi.org/10.1007/s11107-019-00866-8

  • Le Minh, H., O'Brien, D., Faulkner, G., Bouchet, O., Wolf, M., Grobe, L., Li, J.: A 1.25-Gb/s indoor cellular optical wireless communications demonstrator. IEEE Photon. Technol. Lett. 22(21), 1598–1600 (2010). https://doi.org/10.1109/LPT.2010.2073696

  • Monteiro, M.E.P., Rebelatto, J.L., Souza, R.D.: Effective secrecy throughput analysis of relay-assisted free-space optical communications. Phys. Commun. 100731 (2019). https://doi.org/10.1016/j.phycom.2019.100731

  • Nomikos, N., Charalambous, T., Vouyioukas, D., Karagiannidis, G.K.: When buffer-aided relaying meets full duplex and NOMA. IEEE Wire. Commun. 28(1), 68–73 (2021). https://doi.org/10.1109/MWC.001.2000223

    Article  Google Scholar 

  • Palliyembil, V., Vellakudiyan, J.: Capacity and outage probability analysis of asymmetric dual-hop RF–FSO communication systems. IET Commun. 12(16), 1979–1983 (2018)

    Article  Google Scholar 

  • Panhalkar, A.R., Doye, D.D.: Optimization of decision trees using modified African buffalo algorithm. J. King Saud Univ., Comp. Info. Sci. (2021). https://doi.org/10.1016/j.jksuci.2021.01.011

  • Ross, B.H.: Distinguishing types of superficial similarities: Different effects on the access and use of earlier problems. J. Exp. Psychol. Learn. Mem. Cogn. 15(3), 456–468 (1989). https://doi.org/10.1037/0278-7393.15.3.456

    Article  Google Scholar 

  • Ryzhkov, A.V., Schuur, T.J., Burgess, D.W.: The Joint Polarization Experiment: Polarimetric rainfall measurements and hydrometeor classification. Bull. Am. Meteorol. Soc. 86(6), 809–824 (2005). https://doi.org/10.1175/BAMS-86-6-809

    Article  ADS  Google Scholar 

  • Saharia, A., Mudgal, N., Agarwal, A., Sahu, S., Jain, S.: A Comparative Study of Various All-Optical Logic Gates. Optical and Wireless Technologies, pp. 429–437. Springer, Singapore (2020). https://doi.org/10.1007/978-981-13-6159-3_45

  • Sevincer, A., Bilgi, M., Yuksel, M.: Automatic realignment with electronic steering of free-space-optical transceivers in MANETs: A proof-of-concept prototype. Ad Hoc Netw. 11(1), 585–595 (2013). https://doi.org/10.1016/j.adhoc.2012.08.004

    Article  Google Scholar 

  • Sharma, K., Grewal, S.K.: Capacity analysis of free space optical communication system under atmospheric turbulence. Opt. Quantum Electron. 52(2), 82 (2020). https://doi.org/10.1007/s11082-020-2200-6

    Article  Google Scholar 

  • Singh, P., Meena, N.K., Slowik, A., Bishnoi, S.K.: Modified African Buffalo Optimization for strategic integration of battery energy storage in distribution networks. IEEE Access 8, 14289–14301 (2020). https://doi.org/10.1109/ACCESS.2020.2966571

    Article  Google Scholar 

  • Taisne, B., Perttu, A., Tailpied, D., Caudron, C.: Atmospheric controls on ground-and space-based remote detection of volcanic ash injection into the atmosphere, and link to early warning systems for aviation hazard mitigation. Infrasound Monitoring for Atmospheric Studies, pp. 1079–1105. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-75140-5_34

  • Thakur, A., Nagpal, S., Gupta, A.: Kerr effect based spectrum sliced wavelength division multiplexing for free space optical communication. Optik 157, 31–37 (2018). https://doi.org/10.1016/j.ijleo.2017.08.062

    Article  ADS  Google Scholar 

  • Thomas, D.G.: Turbulent disruption of flocs in small particle size suspensions. AIChE J. 10(4), 517–523 (1964). https://doi.org/10.1002/aic.690100420

    Article  Google Scholar 

  • Ursin, R., Tiefenbacher, F., Schmitt-Manderbach, T.: Entanglement-based quantum communication over 144km. Nat. Phys. 3(7), 481–486 (2007). https://doi.org/10.1038/nphys629

    Article  Google Scholar 

  • Vachiramon, P.: Free-space optical communications with retro-reflecting acquisition and turbulence compensation. Oxford University, UK, Diss. (2009)

    Google Scholar 

  • Wu, Z., Little, T.: Network solutions for the LOS problem of new indoor free space optical system. 2010 7th International Symposium on Communication Systems, Networks & Digital Signal Processing (CSNDSP 2010), IEEE (2010). https://doi.org/10.1109/CSNDSP16145.2010.5580368

Download references

Acknowledgements

None

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Malik Mubasher Hassan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All applicable organizational and/or national guidelines for the care and use of animals were followed.

Informed consent

For this type of study formal consent is not required.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hassan, M.M., Rather, G.M. Innovative relay selection and optimize power allocation for free space optical communication. Opt Quant Electron 53, 689 (2021). https://doi.org/10.1007/s11082-021-03313-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-021-03313-z

Keywords

Navigation