Skip to main content
Log in

Spectral beam combining of discrete quantum cascade lasers

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

In this paper, we report a spectral beam combining technique based on discrete quantum cascade lasers at λ ~ 4.8 μm. Good beam qualities of M2 < 1.3 for both fast and slow axes are obtained. The entire spectrum span is approximately 29.1 cm−1, which is consistent with the theoretical results of grating equation. Maximum beam combining efficiency of 58.9% with output power exceeding 1 W is demonstrated under continuous wave operation at room temperature. The limit of beam combining efficiency is theoretically investigated. The independent temperature control for the discrete lasers circumvented the issue of thermal crosstalk between the lasers on an array and pave the way to high power and high efficiency laser spectral beam combining.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Bloom, G., Larat, C., Lallier, E., Carras, M., Marcadet, X.: Coherent combining of two quantum-cascade lasers in a Michelson cavity. Opt. Lett. 35(11), 1917–1919 (2010)

    Article  ADS  Google Scholar 

  • Bloom, G., Larat, C., Lallier, E., Lehoucq, G., Bansropun, S., Lee-Bouhours, M.S.L., Loiseaux, B., Carras, M., Marcadet, X., Lucas-Leclin, G., Georges, P.: Passive coherent beam combining of quantum-cascade lasers with a Dammann grating. Opt. Lett. 36(19), 3810–3812 (2011)

    Article  ADS  Google Scholar 

  • Daneu, V., Sanchez, A., Fan, T.Y., Choi, H.K., Turner, G.W., Cook, C.C.: Spectral beam combining of a broad-stripe diode laser array in an external cavity. Opt. Lett. 25(6), 405–407 (2000)

    Article  ADS  Google Scholar 

  • Devenson, J., Cathabard, O., Teissier, R., Baranov, A.N.: InAs/AlSb quantum cascade lasers emitting at 2.75–2.97 mu m. Appl. Phys. Lett. 91(25), 251102 (2007)

    Article  ADS  Google Scholar 

  • Elder, I. F., Lamb, R. A., Jenkins, R. M.: A hollow waveguide integrated optic QCL beam combiner. SPIE Security + Defence, p. 8543, 854306 (2012)

  • Faist, J., Capasso, F., Sivco, D.L., Sirtori, C., Hutchinson, A.L., Cho, A.Y.: Quantum cascade laser. Science 264(5158), 553–556 (1994)

    Article  ADS  Google Scholar 

  • Hugger, S., Fuchs, F., Aidam, R., Bronner, W.: Spectral beam combining of quantum cascade lasers in an external cavity. Proc. SPIE 7325, Laser Technology for Defense and Security V, 73250H (2009)

  • Hugger, S., Aidam, R., Bronner, W., Fuchs, F., Losch, R., Yang, Q.K., Wagner, J., Romasew, E., Raab, M., Tholl, H.D., Hofer, B.: Power scaling of quantum cascade lasers via multiemitter beam combining. Opt. Eng. 49(11), 111111 (2010)

    Article  ADS  Google Scholar 

  • Kohler, R., Tredicucci, A., Beltram, F., Beere, H.E., Linfield, E.H., Davies, G., Ritchie, D.A., Iotti, R.C., Rossi, F.: Terahertz semiconductor heterostructure laser. Inst. Phys. Conf. Ser. 171, 145–152 (2003)

    Google Scholar 

  • Lee, B.G., Kansky, J., Goyal, A.K., Pflugl, C., Diehl, L., Belkin, M.A., Sanchez, A., Capasso, F.: Beam combining of quantum cascade laser arrays. Opt. Express 17(18), 16216–16224 (2009)

    Article  ADS  Google Scholar 

  • Lu, Q., Slivken, S., Wu, D., Razeghi, M.: High power continuous wave operation of single mode quantum cascade lasers up to 5 W spanning lambda similar to 3.8–8.3 mu m. Opt. Express 28(10), 15181–15188 (2020)

    Article  ADS  Google Scholar 

  • Nemoto, S.: Measurement of the refractive-index of liquid using laser-beam displacement. Appl. Opt. 31(31), 6690–6694 (1992)

    Article  ADS  Google Scholar 

  • Wu, H., Wang, L., Liu, F., Peng, H., Zhang, J., Tong, C., Ning, Y., Wang, L.J.: High efficiency beam combination of 4.6-mu m quantum cascade lasers. Chin. Opt. Lett. 11(9), 091401 (2013)

    Article  ADS  Google Scholar 

  • Yu, J.S., Slivken, S., Evans, A.J., Razeghi, M.: High-performance continuous-wave operation of lambda similar to 4.6 mu m quantum-cascade lasers above room temperature. IEEE J. Quantum Electron. 44(7–8), 747–754 (2008)

    Article  ADS  Google Scholar 

  • Zhang, S.Y., Revin, D.G., Cockburn, J.W., Kennedy, K., Krysa, A.B., Hopkinson, M.: Lambda similar to 3.1 mu m room temperature InGaAs/AlAsSb/InP quantum cascade lasers. Appl. Phys. Lett. 94(3), 031106 (2009)

    Article  ADS  Google Scholar 

  • Zhu, Z.D., Jiang, M.H., Cheng, S.Q., Hui, Y.L., Lei, H., Li, Q.: Narrow linewidth operation of a spectral beam combined diode laser bar. Appl. Opt. 55(12), 3294–3296 (2016)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Liang Ping and Hu Ying. The authors were also grateful to Dr. Lu QuanYong, Jia ZhiWei and Liu ChuanWei for their help in essay writing. This work was supported by National Basic Research Program of China (Grant No. 2018YFA0209103, 2018YFB2200504), in part by National Natural Science Foundation of China (Grant Nos. 61991430, 61774146, 61790583, 61674144, 61774150), in part by Beijing Municipal Science & Technology Commission (Grant No. Z201100004020006), and in part by the Key projects of the Chinese Academy of Sciences (Grant Nos. 2018147, Grant Nos. YJKYYQ20190002, Grant QYZDJ-SSW-JSC027, Grant XDB43000000).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinchuan Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gu, Z., Zhang, J., Zhai, S. et al. Spectral beam combining of discrete quantum cascade lasers. Opt Quant Electron 53, 584 (2021). https://doi.org/10.1007/s11082-021-03242-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-021-03242-x

Keywords

Navigation