Skip to main content

Photoresponsive photonic crystals constructed from azobenzene-grafted silica microspheres

Abstract

Azobenzene compounds have been widely used in many fields and through their response to light they can be used to regulate the properties of ordered structures. In this paper, sub-micrometer colloidal SiO2 spheres were prepared and azobenzene groups were grafted on the surface of SiO2 microspheres. The SiO2 microspheres grafted with azobenzene groups could self-assemble to form photosensitive photonic crystals, whose photonic bandgaps red-shifted as irradiated by UV light due to the structure change of the azobenzene groups.

This is a preview of subscription content, access via your institution.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Allcock, H.R., Kim, C.: Liquid crystalline phosphazenes. High polymeric and cyclic trimeric systems with aromatic azo side groups. Macromolecules 22(6), 2596–2602 (1989)

    ADS  Article  Google Scholar 

  2. Aly, A.H., Mohamed Doaa, A., Mohaseb, M.-G., Abd, N.S., Trabelsi, Y.: Biophotonic sensor for the detection of creatinine concentration in blood serum based on 1D photonic crystal. RSC Adv. 10(53), 31765–31772 (2020). https://doi.org/10.1039/D0RA05448H

    ADS  Article  Google Scholar 

  3. Amiri, I.S., Paul, B.K., Ahmed, K., Aly, A.H., Zakaria, R., Yupapin, P., Vigneswaran, D.: Tri-core photonic crystal fiber based refractive index dual sensor for salinity and temperature detection. Microw. Opt. Technol. Lett. 61(3), 847–852 (2019). https://doi.org/10.1002/mop.31612

    Article  Google Scholar 

  4. Brown, D., Natansohn, A., Rochon, P.: Azo polymers for reversible optical storage. 5. Orientation and dipolar interactions of azobenzene side groups in copolymers and blends containing methyl methacrylate structural units. Macromolecules 28(18), 6116–6123 (2002)

    ADS  Article  Google Scholar 

  5. Fomina, N., Mcfearin, C., Sermsakdi, M., Edigin, O., Almutairi, A.: UV and near-IR triggered release from polymeric nanoparticles. J. Am. Chem. Soc. 132(28), 9540–9542 (2010)

    Article  Google Scholar 

  6. Ho, M.S., Barrett, C., Natansohn, A., Rochon, P.: Azo polymers for reversible optical storage. 8. The effect of the polarity of the azobenzene groups. Can. J. Chem. 73(18), 6124–6127 (1995)

    Google Scholar 

  7. Hu, X., Feeney, M.J., McIntosh, E., Mullahoo, J., Jia, F., Thomas lii, S.W.: Triggered release of encapsulated cargo from photoresponsive polyelectrolyte Nanocomplexes. Acs Appl. Mater. Interfaces 8(36), 23517–23522 (2016)

    Article  Google Scholar 

  8. Kumar, G.S., Neckers, D.C.: Photochemistry of azobenzene-containing polymers. Chem. Rev. 89(8), 1915–1925 (1989). https://doi.org/10.1021/cr00098a012

    Article  Google Scholar 

  9. Lee, C.-R., Lin, J.-D., Huang, Y.-J., Huang, S.-C., Lin, S.-H., Yu, C.-P.: All-optically controllable dye-doped liquid crystal infiltrated photonic crystal fiber. Opt. Express 19(10), 9676–9689 (2011). https://doi.org/10.1364/OE.19.009676

    ADS  Article  Google Scholar 

  10. Li, H., Wang, C., Pan, Y., Yang, Y., Xia, R.: Dynamical thermo-optical switching based on nematic liquid crystals doped with push–pull azobenzene dyes. Opt. Commun. 419, 71–74 (2018)

    ADS  Article  Google Scholar 

  11. Li, C., Xue, Q., Ji, Z., Li, Y., Zhang, H., Li, D.: Construction of photonic crystals with thermally adjustable pseudo-gaps. Soft Matter (2020). https://doi.org/10.1039/C9SM02449B

    Article  Google Scholar 

  12. Li, C., Xue, Q., Ji, Z., Li, Y., Zhang, H., Li, D.: Construction of photonic crystals with thermally adjustable pseudo-gaps. Soft Matter 16(12), 3063–3068 (2020). https://doi.org/10.1039/C9SM02449B

    ADS  Article  Google Scholar 

  13. Lowe, A.B.: Thiol-ene “click” reactions and recent applications in polymer and materials synthesis. Polym. Chem. 1(1), 17–36 (2010). https://doi.org/10.1039/B9PY00216B

    Article  Google Scholar 

  14. Moorthy, M.S., Kim, H.B., Bae, J.H., Kim, S.H., Ha, C.S.: Design of core–shell magnetic mesoporous silica hybrids for pH and UV light stimuli-responsive cargo release. RSC Adv. 6(35), 29106–29115 (2016)

    ADS  Article  Google Scholar 

  15. Nardele, C.G., Asha, S.K.: Photoresponsive smectic liquid crystalline multipods and hyperbranched azo polymers. J. Phys. Chem. B 118(6), 1670–1684 (2014)

    Article  Google Scholar 

  16. Natesan, A., Govindasamy, K.P., Gopal, T.R., Dhasarathan, V., Aly, A.H.: Tricore photonic crystal fibre based refractive index sensor for glucose detection. IET Optoelectron. 13(3), 118–123 (2019). https://doi.org/10.1049/iet-opt.2018.5079

    Article  Google Scholar 

  17. Qutb, S.R., Aly, A.H., Sabra, W.: Salinity and temperature detection for seawater based on a 1D-defective photonic crystal material. Int. J. Modern Phys. B 35(01), 2150012 (2021). https://doi.org/10.1142/s0217979221500120

    ADS  Article  Google Scholar 

  18. Sayed, H., Krauss, T.F., Aly, A.H.: Versatile photonic band gap materials for water desalination. Optik 219, 165160 (2020). https://doi.org/10.1016/j.ijleo.2020.165160

    ADS  Article  Google Scholar 

  19. Stöber, W., Fink, A., Bohn, E.: Controlled growth of monodisperse silica spheres in the micron size range. J. Colloid Interface Sci. 26(1), 62–69 (1968)

    ADS  Article  Google Scholar 

  20. Uygun, M., Tasdelen, M.A., Yagci, Y.: Influence of type of initiation on Thiol-Ene “Click” chemistry. Macromol. Chem. Phys. 211(1), 103–110 (2010). https://doi.org/10.1002/macp.200900442

    Article  Google Scholar 

  21. Wang, L., Dong, H., Li, Y., Xue, C., Sun, L.-D., Yan, C.-H., Li, Q.: Reversible near-infrared light directed reflection in a self-organized helical superstructure loaded with upconversion nanoparticles. J. Am. Chem. Soc. 136(12), 4480–4483 (2014). https://doi.org/10.1021/ja500933h

    Article  Google Scholar 

  22. Wen-Ching, C., Yi-Wei, L., Chien-Tien, C.: Diastereoselective, synergistic dual-mode optical switch with integrated chirochromic helicene and photochromic bis-azobenzene moieties. Org. Lett. 12(7), 1472–1475 (2010)

    Article  Google Scholar 

  23. Xie, Z.-Y., Sun, L.-G., Han, G.-Z., Gu, Z.-Z.: Optical switching of a birefringent photonic crystal. Adv. Mater. 20(19), 3601–3604 (2008). https://doi.org/10.1002/adma.200800495

    Article  Google Scholar 

  24. Yamasaki, T., Tsutsui, T.: Spontaneous emission from fluorescent molecules embedded in photonic crystals consisting of polystyrene microspheres. Appl. Phys. Lett. 72(16), 1957–1959 (1998). https://doi.org/10.1063/1.121234

    ADS  Article  Google Scholar 

  25. Yongqiang, Z., Josu, O., Ute, B., Folcia, C.L., Gerardo, S.E., Christopher, W., Kundalika, M.: An azo-bridged ferroelectric liquid crystal with highly enhanced second and third harmonic generation. J. Am. Chem. Soc. 134(39), 16298–16306 (2012)

    Article  Google Scholar 

  26. Zhang, Q.M., Li, X., Islam, M.R., Wei, M., Serpe, M.J.: Light switchable optical materials from azobenzene crosslinked poly(N-isopropylacrylamide)-based microgels. J. Mater. Chem. C 2(34), 6961–6965 (2014). https://doi.org/10.1039/C4TC00653D

    Article  Google Scholar 

  27. Zhang, Q., Zhang, J., Yan, W.: Synthesis and photochromism of polysiloxane containing azobenzene side groups. Acta Polymer. Sin. 1(1), 121–125 (1996)

    Google Scholar 

Download references

Acknowledgements

This work was financially supported by National Natural Science foundation of China (21975139).

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Chunfang Li or Dongxiang Li.

Ethics declarations

Conflict of interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Li, C., Zhang, H., Xue, Q. et al. Photoresponsive photonic crystals constructed from azobenzene-grafted silica microspheres. Opt Quant Electron 53, 573 (2021). https://doi.org/10.1007/s11082-021-03233-y

Download citation

Keywords

  • Photonic crystals
  • Azobenzene compounds
  • Photonic bandgaps
  • Photo-responsive behavior